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PREFACE

The present thesis entitled “Evaluation of antioxidants in amelioration of toxic effects 

of engineered nanoparticles using Caenorhabditis elegans as a basic in-vivo 

alternative model” is the outcome of the research carried out by me under the 

supervision of Dr. Aruna Satish, Scientist, CSIR-IITR, Lucknow.

The thesis has been divided into five chapters. The Chapter 1 deals with the descriptive 

background, history, scope, problems and future aspects of compounds such as titanium 

di-oxide nanoparticles (nano-TiO2), zinc oxide nanoparticles (nano-ZnO), ascorbic acid 

and curcumin. The reports concerning the NPs applications as well as their toxicity are 

documented in this chapter, covering the recent reports. Further, studies on the protective 

efficacy of antioxidants (curcumin and ascorbic acid) against various diseases, toxicity 

and adverse conditions are reported in this chapter. Chapter 2 describes the lethal and the 

toxic effects of nano-TiO2 and nano-ZnO along with bulk in Caenorhabditis elegans (C. 

elegans) at acute and chronic exposure. Further, high ROS generation in C. elegans on 

exposure to nano/bulk TiO2 and ZnO is reported in this chapter. The ameliorating 

properties of ascorbic acid and curcumin against nanoparticle induced ROS and lethality 

at acute and chronic exposure is also discussed. The results in this chapter clearly 

describes that in presence of antioxidants, the lethal effects of nano/bulk TiO2 and ZnO is 

mitigate even at high exposure concentrations in in-vivo models system such as, C. 

elegans. In the Chapter 3, we describe the role of the major stress response 

(Insuline/insulin-like growth factor realted signaling) and immune response (p38 and 

JNK-1) signaling pathways against the oxidative stress induced by nano/bulk TiO2 and 

ZnO exposure. Further presence of antioxidants during exposure to nano/bulk TiO2 and 

ZnO is shown to protect the worms from particle induced alteration in the gene and 

protetin expresion. Thus, the protective efficacy of antioxidants at gene expression level is 
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described in this chapter. Both the antioxidants ascorbic acid and curcumin protect the 

organism from gene and protein alteration against nano/bulk TiO2 and ZnO exposure.  In 

the Chapter 4, the functional validation of oxidative damage and antioxidant enzyme 

regulation when organism exposed to nano/bulk TiO2 and ZnO is discussed. Exposure to 

nano/bulk particles enhances the free radical generation leading to disturbance in the 

oxidant-antioxidative enzyme/molecules equilibrium, which inturn damages the macro-

molecules such as protein, lipid and DNA and ultimately leads to cytotoxicity in the 

organism. However, co-exposure of antioxidants ascorbic acid and curcumin protect the 

worm from oxidative damage and maintain the normal biochemical equilibrium. This 

section of the study clearly describe, that antioxidants co-exposure along with nano/bulk 

exposure provide protection from nano/bulk TiO2 and ZnO induces oxidative damage to 

worms. Finally, in the Chapter 5, the functional validation of the protective role of 

antioxidants ascorbic acid and curcumin against nano-TiO2 and nano-ZnO exposure on the 

physiology of C. elegans is reported. Growth, reproduction, behavior and the life span of 

the organism is adversely affected by nano/bulk TiO2 and ZnO while, antioxidants provide 

protection against the same. Thus, ascorbic acid and curcumin are efficient to ameliorate 

the adverse effects of nano/bulk TiO2 and ZnO.  

Wide applicability of both the antioxidant gave us the vision to attenuate the toxicity of 

nano and bulk TiO2/ZnO by combining antioxidant along with nanoparticles exposure. 

Majority of the studies regarding the protective efficacy of antioxidant towards different 

cell lines and organism are reported against various compounds, chemical and metals but 

in this study the novelty is with regard to the ameliorating nature of antioxidant at high 

exposure concentration of nanoparticles at molecular, biochemical and physiological 

level. The involvement of IIS-signaling and immune response in the nanoparticles induced 
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oxidative stress and apoptosis is observed, and the capability of antioxidants to protect the 

organism from the oxidative damage is also reported.

A systematic study of ameliorating effects of antioxidant against nano/bulk TiO2 and ZnO 

induces lethality and toxicity at acute and chronic exposure described in Chapter 2 is 

published as 

1. The role of antioxidants in attenuation of Caenorhabditis elegans lethality on the 

exposure to TiO2 and ZnO nanoparticles. Madhavi Sonane, Nida Moin and Aruna 

Satish (2017). Chemosphere, 187 (2017), 240-247.                                        IF. 4.506
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1.1. INTRODUCTION 

Nanotechnology (NT) is an immense combination of science and technology that play 

an essential role to solve real-life problems, boosting the economic development of the 

country. NT implies engineering an organic and inorganic matter at the atomic or 

molecular level yielding the nanometer scale (>100 nm), fundamentally new and 

controlled molecular organization with unique properties called as nanoparticles (NPs) 

or engineered nanoparticles (ENPs) (Khan et al., 2017). NPs are ultrafine microscopic 

units with at least one dimension less than 100 nm. NPs are  defined as “A natural, 

incidental or manufactured material containing particles, in an unbound state or as an 

aggregate or as an agglomerate and where, for 50% or more of the particles in the 

number size distribution, one or more external dimensions is in the size range 1 nm-

100 nm” (European Commission, 2011). 

Apart from the small size, high surface reactivity, tunable chemical and physical 

properties [particle shape, surface structure, chemical composition (purity, oxidation 

states)] have made ENPs a central component in an array of emerging technologies 

(Babu, 2016; Choi et al., 2016). The novel attributes of NPs has revolutionized various 

fields such as electronics, therapeutics, cosmetics and a wide range of consumer 

products (Bui et al., 2017; Colombo al., 2017; Mendes et al., 2017; Truppi et al., 2017; 

Babu, 2016; Choi et al., 2016). NPs are even used for environment remediation (Khan 

et al., 2017; Snousy and Zawrah, 2017). NT also offer novel functionalities to existing 

technology and product to improve the performance such as lightweight alternatives of 

sports goods, transportation and construction, high-quality packaging materials, 
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scratch, and heat resistant UV shield, etc. (Choi et al., 2016; Ramachandraiah et al., 

2015; Stark et al., 2015). At present more than 1500 consumer products categorized in 

health and fitness (788 products), cosmetics (154 products), clothing (187 products), 

personal care (292 products), sporting goods (119 products), sunscreen (40 products) 

are available in the market (Vance et al., 2015). Moreover, the global investment in 

nanotechnology research and development ($3 trillion by 2020, Roco et al., 2011) is 

rising worldwide, in turn giving employment to more than 6 billion people. Some of 

the nanomaterials along with their estimated requirment or production are listed in 

table 1.1.  

Table 1.1 Estimated requirment or production of ENPs

Nanomate
rial (NMs)/ 
nanopartic
les (NPs)

Estimated 
requirment/ 
production
(2012-2023)

Application References

Carbon 
nano tube

$1.1 billion
(12,800 
Metric Tons 
in 2016)

Cathode ray tubes, 
electrostatic discharge, 
electrical-shielding 
applications, racquets, golf 
clubs, surfboards, ice 
hockey sticks, mass 
transportation fuel system 
components, battery 
electrode additives, plastics 
additives and master 
batches

https://www.nanowe
rk.com/spotlight/spo
tid=23118.php
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Engineered nanoparticles (ENPs):

Changes in particle size from bulk to nano are associated with changes in properties, 

providing many advantages over bulk material such as;

Graphene $195 million

( 921.50 Tons 
in 2018)

$1.3 billion 
by 2023

Energy, electronics, 
composite, coatings, 
biomedical, sensors, 
automobile, aerospace

https://www.bccrese
arch.com/market-
research/advanced-
materials/graphene-
technologies-
applications-
markets-report-
avm075d.html

Nano-
Metal/met
al oxides

 270, 041- 
1663, 168 
tons 

(2012-2020)

Consumer goods, 
electronics, personal care, 
automotive,  medical, 
electronics, and military 
markets

https://www.prnewswi
re.com/news-
releases/the-global-
market-for-metal-
oxide-nanoparticles-to-
2020-210803631.html

Nanocomp
osites

$4.2 billion 

(5,84,984 
Metric Tons 

by 2019)

Packaging, Automotive, 
Aerospace & Defense, 
Electronics & 
Semiconductor, Energy, 
Coatings and others

https://www.bccrese
arch.com/market-
research/nanotechn
ology/nanocomposit
es-market-
nan021f.html 

Nano-
ceramic

$12.1 
billion in 
2018

Energy supply and storage, 
communication, 
transportation systems, 
construction and medical 
technology

https://www.bccrese
arch.com/market-
research/nanotechn
ology/advanced-
ceramics-
nanoceramic-
powders-
nan015g.html

https://www.bccresearch.com/market-research/advanced-materials/graphene-technologies-applications-markets-report-avm075d.html
https://www.bccresearch.com/market-research/advanced-materials/graphene-technologies-applications-markets-report-avm075d.html
https://www.bccresearch.com/market-research/advanced-materials/graphene-technologies-applications-markets-report-avm075d.html
https://www.bccresearch.com/market-research/advanced-materials/graphene-technologies-applications-markets-report-avm075d.html
https://www.bccresearch.com/market-research/advanced-materials/graphene-technologies-applications-markets-report-avm075d.html
https://www.bccresearch.com/market-research/advanced-materials/graphene-technologies-applications-markets-report-avm075d.html
https://www.bccresearch.com/market-research/advanced-materials/graphene-technologies-applications-markets-report-avm075d.html
https://www.bccresearch.com/market-research/advanced-materials/graphene-technologies-applications-markets-report-avm075d.html
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1.   Mechanical properties: Mechanical properties depend upon the bonds (covalent, 

valet, ionic) between the atoms but as the size reduces up to the nano level, the 

elasticity of material reduces dramatically. Hence the hardness of the material is also 

related to the size. For example, cutting tools made by NPs such as tungsten carbide, 

tantalum carbide is much stronger, erosion resistant than their conventional 

counterparts (Sahijpaul, 2015). 

2.  Structural properties: Size, shape, and surface area of the particles affects 

various properties of the material such as small size of particles makes NPs easy to 

penetrate as compared to the bulk. Round shape particles have more absorption 

efficiency compared to rod-shaped or fibrous NPs and high surface area to volume 

ratio increase chemical reactivity of the material (Albanese et al., 2012).

3.   Quantum effect: Material often has unexpected visible properties once they are in 

nano-form because they are small enough to confine their electrons and produce 

quantum effects. Such as gold NPs appear deep red to black in solution, depending on 

their size. At the nano-scale, the quantum effects rule the behavior and properties of 

particles. Hence the quantum effect of NPs is responsible for its wide application 

spectrum in optics and electronics (Cho and Park, 2016).

NPs exist in the natural world such as volcanic ash, physical and chemical weathering 

of rocks, glacial ice cores, oceans, surface waters, groundwater, atmospheric water, 

treated drinking water, diesel exhaust, electroplating, and welding etc. (Strambeanu et 

al., 2014) and also are created by human activities such as ENPs. Manipulation of the 

matter with desired properties and utility at atomic, molecular or sub-molecular level 

generate ENPs.
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1.1.1 Classification of ENPs: 

There are many ways to classify NPs by their composition, morphology, dimension, 

origin, uniformity, etc. By morphology, nanoparticles can be categories as nanorods, 

nanoparticles, nanowires, nanotube, nanofibers. They can also be classified by 

dimension as one dimension (films), two dimensions (fibers), and three dimensions 

(particles). Further coated, encapsulated and mixed depending on the composition. By 

origin NPs are classified as natural and artificial nanoparticles.

There are four categories of ENPs based upon their chemical composition

i. Carbon-based nanoparticles (CNPs): CNPs are mostly composed of carbon 

or in form of hybrids with other NPs (Ti-Ni-C, Ti-Fe-C). CNPs can be in the form of 

hollow spheres, ellipsoids, or tubes. Spherical and ellipsoidal carbon nanomaterials 

termed as fullerenes, while cylindrical carbon NPs termed as carbon nanotubes 

(CNTs) are the most widely used form of CNPs. Nanotubes can be categorized as 

single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes 

(MWCNTs), nanodiamonds, and graphene. Excellent mechanical strength, electrical 

and thermal conductivity, and optical properties make these CNPs more valuable for 

various applications, such as high-strength composite materials and electronics (Yuan 

et al., 2016).

ii. Dendrimers: Dendrimers are nanosized polymers made by the repetitive 

addition of branching groups which in turn are branched molecules. Dendrimers have 

three components: a central core, an interior dendritic structure (the branches), and an 

exterior surface with functional surface groups.  Different combination of these 

components gives products of different shapes and sizes.  Dendrimers are 
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monodispersed, usually symmetric and their properties are mainly controlled by the 

functional groups on the surface. Dendrimers are used in drug delivery, gene 

transfection, catalysis, energy harvesting, photo activity, molecular weight and size 

determination (Undre et al., 2016).

iii. Composites: Composites are the multiphase solid materials such as 

combination of NPs with other NPs or bulk materials, in that at least one of the phases 

has one, two or three dimensions in nanoscale such as colloids, gel, copolymers. 

Nanosized clays like NPs are incorporated into various products such as packaging 

materials, to enhance mechanical and/or thermal barrier, and flame-retardant 

properties (Ozbakkaloglu et al., 2016).

iv. Metal-based materials: Metal is the main component of these particles which 

includes nanogold, nanosilver and metal oxides, such as titanium dioxide, copper 

oxides, aluminum oxides, chromium oxides and closely packed semiconductor like 

quantum dots. Biomedical and pharmaceutical industries are mainly focusing on the 

metal-based nanomaterials due to the diverse and interdisciplinary properties. Ability 

to be joined chemically with antibodies or pharmaceutical compounds/chemicals 

offers use of metal-based nanoparticles in biochemistry, catalysis as well as biology as 

a sensor. In the field of medicine, NPs are used in drug delivery and drug designing 

(Bui et al., 2017; Colombo et al., 2017; Mendes et al., 2017; Truppi et al., 2017; Yan 

et al., 2016; Titus et al., 2016).

1.1.2 Adverse effect of nanotechnology/nanoparticles: 

ENPs are associated with the economic development of the country but as a coin have 

two sides; the very properties of nanostructured materials that make them so attractive 

https://en.wikipedia.org/wiki/Monodisperse


Chapter 1                                                                         Introduction and Review of litrature 

8

could potentially lead to unforeseen health or environmental hazards. Concerns 

regarding the potential risk to human and environment associated with the exposure of 

NPs are raised.  At present advancement and large-scale production of ENPs increases 

the intentional or accidental release of ENPs into the environment during all the stages 

of production, recycling and disposal (Lai and Alsudir, 2017; Bossa et al., 2017; 

Dobias and Bernier-Latmani, 2013). Thus there is urgent need to draw guidelines for 

proper handling and safe utilization of NPs (Maynard, 2012).  From the environment, 

NPs can enter in organism through various routes such as dermal, oral and respiratory 

tract and from there to other parts of the body (Fig. 1.1). NPs are capable of crossing 

the skin barrier, blood-brain barrier as well as placental barrier (Song et al., 2016, 

Song et al., 2015). It has been reported that inhalation could be the most frequent 

route of exposure to NPs present in the environment. Aerosols containing nanometer 

size metallic particles (e.g., Zinc oxide, tin) enter the bloodstream after passing 

through the respiratory system and distributed in the target organs such as liver, 

spleen, lung, kidney, heart (Antonini, 2003). These ultrafine particles can cause major 

pulmonary and cardiac diseases.
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Figure 1.1 Routes of exposure to nanoparticles. Nanaoparticles can 

enter through dermal route, oral route and respiratory tract to other 

parts of the body (Source: Roy et al., 2014)

A review published on nanomaterial consumer products inventory listed 1814 nano-

enabled consumer products from 622 companies in 32 countries (Vance et al., 2015) 

and also states that majority of the commercial products do not present sufficient 

information about the toxicological impact of NPs. Further, a European database 

claimed the presence of 2300 nano-based consumer products contains biocidal 

property (Mackevica et al., 2016).  An estimate of 260,000-309,000 tonnes of global 

production of ENPs in 2010 ended up into the landfills (63-91%), soils (8-28 %), 

water bodies (0.4-7 %), and the atmosphere (0.1-1.5 %) (Keller et al., 2013). In the 

ecosystem, the particle has the potential of interacting with the biotic and abiotic 

components in unexpected ways (Krzyżewska et al., 2016). The toxic potential of 

ENPs has been tested in various lower and higher model systems as the representative 
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of the different ecosystem. The main aim of toxicity assessment studies is to protect 

human beings whereas ecotoxicity addresses different trophic levels and intended to 

protect populations and ecosystem. Presently existing nano-ecotoxicological data 

includes studies mostly (approximately one third) on crustaceans such as water flea 

Daphnia magna (337 entries), followed by bacterium Escherichia coli (120 entries), 

unicellular alga Pseudokirchneriella subcapitata (107 entries), fish Danio rerio (66 

entries), naturally luminescent bacterium Vibrio fischeri (44 entries), and nematode 

Caenorhabditis elegans (41 entries) (Juganson et al., 2015). Some of the studies are 

listed in table 1.2. The eco-toxicology of ENPs shows that toxicity in lower organism 

occurs at very low concentration mg/l and physiology of the lower organism was 

found to be most affected (Hyseni, 2016; Khare et al., 2015; Exbrayat et al., 2015). 

The in-vitro studies  on different cell line to trace the possible mechanisms of NPs 

toxicity indicated an increase in oxidative stress, cytotoxicity, decreased 

mitochondrial potential, intracellular release of [Ca2+], mutagenic effects and 

inflammatory responses (interleukin production) (Petrarca et al., 2015; Dissanayake et 

al., 2015) as mentioned in  table 1.2. Even in the vertebrates exposure to NPs has 

revealed injury to epithelial tissue, fibrosis through inflammation, oxidative stress 

response, etc. (Zhu et al., 2012; Lindberg et al., 2009). 

1.1.3 Adverse effects of Metal-based ENPs: 

Among the wide variety of ENPs (e.g. carbon-based materials, metals, metal oxides 

and biopolymers), metal-based nanoparticles [such as silver (Ag NPs), titanium 

dioxide (TiO2 NPs), zinc oxide (ZnO NPs), cadmium selenide quantum dots (CdSe 

QD)] are being predominantly used by several industries (Bui et al., 2017; Truppi et 
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al., 2017; Colombo et al., 2017; Yan et al., 2016; Titus et al., 2016). Metal oxides NPs 

are important in the field of physics, chemistry, and material sciences. They have 

application in the fabrication of microelectronic circuits, sensors, piezoelectric 

devices, fuel cells, coatings for the passivation of surfaces against corrosion and as 

catalysts (Truppi et al., 2017; Yan et al., 2016; Titus et al., 2016; Falcaro et al., 2016). 

Usage in applied science such as medicine, information technology, catalysis, energy 

storage and sensing have driven massive production of these nanostructures (Bui et 

al., 2017; Truppi et al., 2017; Falcaro et al., 2016; Yan et al., 2016; Titus et al., 2016; 

Kaushik and Moores, 2016). The global market report 2013, estimates hike in the 

production of metal oxide NPs from 2,70,041 tons to 16,63,168 tons in 2012-2020, 

which represent a class of NPs with highest global production. Metal oxide NPs 

attracts considerable interest concerning the environment, health and safety issues due 

to their potential toxic impact. Silver, gold, copper, TiO2 and ZnO NPs are extensively 

utilized in clothing, disinfection, cosmetics, etc.  The nano metal and metal oxides 

such as TiO2, gold, and silver, were considered to be non-toxic due to the lack of 

toxicity of the respective bulk material. 

Metal oxides NPs exposure causes a broad range of adverse health effects in humans 

and animals. Invertebrates and human (workplace exposure) metal oxides NPs 

toxicity are associated with pulmonary, renal, hepatic, neuronal and haematologic 

dysfunctions. However, in a lower organism, metal oxides NPs exposure has an 

adverse effect on the physiology (growth, reproduction, and lifespan), neuronal 

function and biochemical endpoints (behavior, enzyme activity and its intracellular 

concentration). Additionally, metal oxides NPs at very low concentration were found 
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toxic to lower model organisms (Khare et al., 2011; Gaiser et al., 2011). Metal oxide 

NPs can also accumulate in plants and have a negative effect on the growth, seed 

germination, metabolism, chlorophyll content and induces oxidative stress (Faisal et 

al., 2016; Deng, 2014; Oukarroum et al., 2013; Larue et al., 2012).  When illuminated, 

metal oxides NPs are capable of being oxidized or dissolved in water and can release 

metal ions, leading to metal toxicity. Although there is a number of different routes by 

which metal oxides NPs cause toxicity but the underlying basic mechanisms can be 

summarized as ROS mediated oxidative stress which further leads for other 

consequences such as inflammatory responses, apoptosis, neuronal damage, chronic 

diseases etc. The toxicity reported for various metal oxides NPs, are listed in table 1.2

Table 1.2 Adverse effects of metal/metal oxide NPs on different model system

NMs/NPs Target Effect References

Fetal lung 
fibroblast MRC-
5 cells

↑OS, distorted cell membrane, cell 
damage and cell death

Shindea and  
Tsai, 2015

Dunaliella 
tertiolecta

Inhibition of growth and 
photosynthesis

Thakkar et 
al., 2016

C. elegans ↓ body length, ↓ survival, alteration 
in metabolic response

Walczynska 
et al., 2018

Wistar Rat Induced biochemical alterations 
and histopathological abnormalities 
(severe alveolar edema, 
hemorrhage in lungs and 
myocytolysis in heart)

Zayerzadeh 
et al., 2016

C. elegans ↓ body length, ↓ survival, alteration 
in metabolic response

Walczynska 
et al., 2018

Carbon 
NPs/nanot
ubes/ 
fullerence/
qantum 
dots

Rapeseed and 
Wheat

↑Accumulation at peripheral areas 
of leaves; more accumulated in 
newly developed leaves

Larue et al., 
2012

Cerium Freshwater alga ↓ Photosynthesis, ↓carbon fixation, Taylor et al., 
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Chlamydomonas 
reinhardtii

↓energy metabolism 2016

C. elegans ↑ ROS, ↑ OS, ↓ lifespan Zhang et al., 
2011

Mice ↑ ROS, ↑ OS,  ↑lifespan, ↑DNA 
damage

Nemmar et 
al., 2017

NPs

Rat ↑ Cytotoxicity, ↑ OS, 
↑ inflammation 

Srinivas et 
al., 2011

A549, HepG2 
epithelial cells 
and
NIH/3T3 
fibroblasts cells

↑ Cytotoxicity, ↑membrane 
disruption, ↑ OS

kim et al., 
2015

Dunaliella 
tertiolecta

Growth alteration, cell
entrapment and agglomeration of 
NPs

Manzo et al., 
2015

Albino rats ↑ Body weight, ↑ AST, ↑ ALT Shalaby et 
al., 2018

Silica NPs

Mice  ↑Airway inflammation, 
↑pathological changes, and 
↑ cytokine levels (IL-5, IL-13, IL-
1β, and IFN-γ)

Han et al., 
2016

Human alveolar 
(A549), and 
bronchial 
(BEAS-2B) cells

Cyto-genotoxic and inflammatory 
effects

Cavallo et al., 
2015

Liver cells (BRL-
3A cells)

↑ Cell membrane damage, ↑ OS, 
↑ immune inflammation and 
↑ DNA damage

Liu et al., 
2016

Cobalt 
NPs

Eggplant ↓ Seed germination, ↓ root growth, 
↑DNA damage, ↑ MD, ↑OS,  ↑cell 
death

Faisal et al., 
2016

Human 
pulmonary 
fibroblasts

↑ Cytotoxicity, ↑ OS Avalos et al., 
2015

Mice ↓ Body weight, ↓ spleen index, 
↓ red blood cells

Chen et al., 
2013

Gold NPs

Tobacco Accumulated within leaf mid rib 
near petiole, concentration ranges 
between 2.2 and 53.5 mg/kg in
aerial tissues

Deng, 2014

Silver NPs Primary human 
umbilical vein 

↑ ROS, disruption of endothelial 
layer, ↑ inflammation in liver, 

Guo et al., 
2016

http://ascidatabase.com/author.php?author=Shehata&last=Shalaby


Chapter 1                                                                         Introduction and Review of litrature 

14

endothelial cells kidney and lung
Human 
pulmonary 
fibroblasts

Size dependent cytotoxicity and OS Avalos et al., 
2015

Oreochromis 
niloticus and 
Tilapia zillii

↑ OS, ↑ AEA Afif et al., 
2016  

Rat Alteration in biochemical and 
hematological parameter (red 
blood cell count, platelet count, 
white blood cell count and AST) 

Qin et al., 
2017

Aquatic plant 
Lemna gibba

↑ OS Oukarroum 
et al., 2013

Primary 
hepatocytes of 
Epinephelus 
coioides

↑ Cytotoxicity, ↑ ROS, ↑ OS, 
↑ cell apoptosis and necrosis, 

Wang et al., 
2016 1

Epinephelus 
coioides

Growth inhibition, accumulation of 
particles in tissue, ↑ lipid damage

Wang et al., 
2014

Rat Damage to red blood cells, thymus, 
spleen, liver, and kidney

Lee et al., 
2016

Albino rats ↑ Body weight, ↑ AST, ↑ ALT Shalaby et 
al., 2018

Copper 
NPs

Rat Agglomeration in intestine, 
stimulate sex related difference, 
morphological changes in the liver, 
kidneys, and spleen

Lee et al., 
2016

Human normal 
fibroblasts and 
fibrosarcoma 
cells

↑Cytotoxicity, ↑ genotoxicity Yang et al., 
2013

Chlorella 
pyrenoidosa

↓ Growth, ↑ MDA content Lei et al., 
2016

Chlorella vulgaris EC50 76 mg/l, cell count 90 mg/l Ko et al., 
2018

Iron NPs

Zebrafish (Danio 
rerio)

Developmental toxicity, embryos 
mortality, hatching delay, and 
malformation

Zhu et al., 
2012

Freshwater algal 
isolate Chlorella 
ellipsoids

↑ Cytotoxicity, ↑ROS, 
morphological changes and cell 
wall damage

Pakrashi et 
al., 2013

Aluminum 
NPs 

Ceriodaphnia ↑ OS, ↑ acute toxicity Pakrashi et 

http://ascidatabase.com/author.php?author=Shehata&last=Shalaby
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dubia al., 2013
C. elegans ↓ body length, ↓ survival, alteration 

in metabolic response
Walczynska 
et al., 2018

C. elegans ↑ ROS, altered locomotion Li et al., 2012

↑ = Increased level, ↓= Decreased level, OS= Oxidative stress, MD= Mitochondrial 

dysfunction, AEA= Antioxidative enzymes activity, ADM= Antioxidant defense 

mechanism, ROS= Reactive Oxygen Species, MDA= Malondialdehyde, ALT= 

Alanine aminotransferase, AST= Aspartate aminotransferase

1.1.4 Adverse effects of TiO2 NPs and ZnO NPs:

World revenues for TiO2 and ZnO metal oxide NPs were approximately $6,150 

million in 2009, concerning this estimated raise in 2017 was $14,550 million 

(Research and Market, 2011). While the annual production of nano form of TiO2 in 

2025 is predicted to reach 2.5 million tons (Lin et al., 2014). TiO2 NPs are transparent, 

can absorb and reflect UV light and one of the top five ENPs used in consumer 

products while ZnO NPs appears as the white powder and have remarkable optical, 

physical, and antimicrobial properties (Srivastava et al., 2015). The European 

Commission of Cosmetics Regulation has permitted the use of TiO2 NPs in 

sunscreens; however not zinc oxide NPs (Vance et al., 2015). Both the NPs (TiO2 and 

ZnO NPs) have been used in a wide array of applications such as cosmetics, paints, 

paper, food additives and personal care products (Uikey and Vishwakarma, 2016; 

Weir et al., 2012). 

 Nanoparticles, their aggregates, and ions with such a high production and utilization 

may get released into the environment in high amounts during all the stages of 
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processing. Thus, TiO2 and ZnO NPs would leach into the environment, increasing 

the critical issues of addressing the safety of health and environment. Estimated 

concentrations of TiO2 and ZnO NP in the sewage treatment plant are 950 and 200 

mg/kg respectively, which increases by 10 mg/kg yearly and it is predicted to increase 

by 1-2 μg/kg per year in urban soil (Gottschalk et al., 2013). Similarly, the 

concentration of TiO2 and ZnO NPs in the air is estimated to increase by 0.001-0.004 

μg/m3 (Sun et al., 2014). Further, in 10% of river stretch in Europe, about 150 ng/l 

concentration of ZnO nanoparticles is estimated (Dumont et al., 2015).  These studies 

highlight the presence of ENPs in the environment and their unpredictable 

consequences on ecosystem and organism.

Published literature indicates that nanomaterials are toxic to a wide range of 

organisms such as bacteria, algae, crustacea, fish, Daphnia, fairy shrimp and 

amphibians such as Xenopus laevis and mammals (Kosyan et al., 2016; Hong and 

Zhang, 2016; Chakraborty et al., 2016; Yang et al., 2015). Much of the literature is 

available on the toxicity of TiO2 and ZnO NPs ranging from the organism of different 

biota to varying properties of particles (different size or structure). TiO2 and ZnO NPs 

cause DNA damage, chromosomal abbreviation, ROS generation, cytotoxicity, 

activation of inflammatory response and apoptosis (Hong and Zhang, 2016; Saliani et 

al., 2016; Dubey et al., 2015). A study reported the IC50 of TiO2 (25.29±0.12, 

34.99±0.09, 35.06±0.09 mg/l) and ZnO NPs (5.716±0.1, 3.160±0.1, 5.57±0.12 mg/l) 

depending on different cytotoxicity assays MTT assay, neutral red uptake assay, and 

lactate dehydrogenase assay respectively, on WAG cells. Further, dose-dependent 

damage to macromolecules such as DNA, lipid, protein, and alteration in total 
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antioxidant capacity was observed in WAG cell line (Dubey et al., 2015). Another 

study reports the toxicity of TiO2 NPs with disodium laureth sulfosuccinate 

(surfactant) on digestive cell and lysosomal response of the cell. TiO2 NPs 

accumulation in endosomes, lysosomes and residual bodies of digestive cells and 

disturb membrane integrity (Jimeno-Romero et al., 2016). There are reports about 

anatase/rutile samples of TiO2 NPs to have higher toxicity than the pure anatase NPs 

on human intestinal Caco-2 cells. Further, it is studied that specific surface area and 

crystalline structure of NPs are the important aspects for determining the toxicity of 

TiO2 NPs in intestinal cells (Gerloff et al., 2012). TiO2 NPs induces genotoxic and 

cytotoxic effects at two trophic levels: plant (Allium cepa and Nicotiana tabacum) and 

human lymphocytes. In plant, TiO2 NPs inhibits the root growth and induces lipid 

peroxidation, leading to DNA damage (4 mM) while in cell line TiO2 NPs at the very 

low concentration (0.25 mM) induces cytotoxicity and genotoxicity (Ghosh et al., 

2010).  In liver cell lines (A549, V79) exposure to TiO2 NPs induces internalization, 

oxidative stress, pro-inflammatory (LDH, Interleukin-8) and genotoxic response 

(Petrarca et al., 2015; Wang and Fan, 2014). However, TiO2 NPs in neuronal cell line 

affect the cell structure, proliferation, changes the release and metabolism of 

neurotransmitters and the tendency of the exposed cell toward the neurons (Song et 

al., 2015; Ma et al., 2010). Most of the dermal exposure studies have reported TiO2 

NPs to have low penetration efficiency for stratum corneum of the dermal barrier 

while high concentration and long-time exposure of NPs induce cytotoxicity, 

inflammatory response, and oxidative stress (Crosera et al., 2015).  ZnO NPs and 

TiO2 NPs were classified as most toxic and harmful for all species on the basis of risk 
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assessment of 7 engineered NPs (TiO2, ZnO, CuO, Ag, SWCNTs, MWCNs, and C60-

fullerenes) on bacteria, algae, crustaceans, ciliates, fish, yeasts and nematodes (Kahru 

et al., 2010). Ecotoxicity study of TiO2 NPs on microalgae Scenedesmus species and 

Chlorella species have reported a decrease in the chlorophyll content in the treated 

group (Sadiq et al., 2011). A comparative study on TiO2 NPs in light and dark 

condition on Bacillus licheniformis has indicated increased ROS generation, reduced 

LDH level and high lethality in presence of light (Dalai et al., 2012).  The in-vivo 

toxicity evaluation at sub-acute exposure (100 and 200 mg/l concentration) of TiO2 

NPs in juvenile carp (Cyprinus carpio) induces a significant decrease in antioxidant 

enzyme activity, increase in lipid peroxidation and histopathological changes 

indicating that liver is the most susceptible organ (Linhua et al., 2009). TiO2 NPs have 

a negative effect on body length, hatching rate, reproductive ability and antioxidative 

defense system of Daphnia magna and zebra fish (Liu et al., 2014).  In C. elegans, 

analysis of the effect of TiO2 NPs in light and dark conditions indicated, that the 

presence of light caused significant oxidative stress and reduction in the reproductive 

ability of the worm (Angelstorf et al., 2014). In absence of a light significant 

alteration in expression of genes such as cyp35a2, sod-3, ced-3, ced-4, and genes 

involved in insulin signaling pathway has been reported (Khare et al., 2015; Roh et 

al., 2010). Further, metabolomics studies have indicated disruption of TCA cycle and 

neuronal toxicity in response to TiO2 NPs exposure in C. elegans (Ratnasekhar et al., 

2015). Through microarray followed by reproductive test, anatase particle was 

observed to be more toxic on metabolic pathways while rutile particle has shown 

greater toxicity on the developmental process (Rocheleau et al., 2014). Toxicity of 
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different shapes of TiO2 NPs (rod, bipyramidal and quasispherical) revealed that rod-

shaped NPs affect the pharyngeal pumping, reproduction, and development of C. 

elegans and found more toxic than bipyramidal and quasispherical NPs (Iannarelli et 

al., 2016). Chronic (7 days) exposure of TiO2 NPs in earthworm Lumbricus terrestris 

has been reported to induce apoptosis in the cuticle, intestinal epithelium, and 

chloragogenous tissue (Lapied et al., 2011). Further TiO2 NPs induces oxidative 

stress, genotoxicity and moderate inflammatory response in mice (Shi et al., 2013). 

Exposure of ultrafine TiO2 particles at high concentration for long time induced lung 

cancer in rat (Trouiller et al., 2009). Therefore, The International Agency for Research 

on Cancer (IARC) classified TiO2 as a Group 2B carcinogen and possibly 

carcinogenic to humans. In humans, TiO2 NPs on reaching the circulatory system was 

found to adversely affect liver, spleen, kidney, and brain (Chang et al., 2013). 

National Institute for Occupational Safety and Health issued a report on the 

“Occupational Exposure to Titanium Dioxide” in 2011 and emphasized that TiO2 NPs 

are able to induce lung tumor, lung cancer and other adverse effect 

(http://www.cdc.gov/niosh/docs/2011-160/pdfs/2011-160.pdf). 

Among the in-vitro toxicity assessment, the primary culture of rat alveolar epithelial 

cell monolayers showed mitochondrial dysfunction and intracellular ROS production 

on exposure to ZnO NPs in dose and time-dependent manner (Kim et al., 2010). 

Similarly at sub-cellular level isolated mitochondria from ZnO NPs exposed Wistar 

rat liver showed alteration in mitochondrial membrane potential, the permeability of 

H+ and K+ ions, release of cytochrome C and generation of ROS (Li et al., 2012). The 

human alveolar epithelial-like type-II cell line A549 on exposure to ZnO NPs revealed 
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dose-dependent increase in cellular toxicity in terms of decrease in cell number, size, 

and viability by ROS generation and genotoxicity (Heim et al., 2015), Similarly the 

human lung epithelial cells (L-132) showed that ZnO NPs induces ROS generation 

and depletion in GSH level, cell shrinking, nuclear condensation, formation of 

apoptotic bodies and DNA fragmentation (Sahu et al., 2013). In primary astrocytes, 

ZnO NPs induced dose and time-dependent cytotoxicity (by MTT), oxidative stress 

(by LDH release, high ROS generation, caspase-3 activation), and apoptosis (by 

nuclear condensation and poly(ADP-ribose) polymerase-1 cleavage) by the activation 

of JNK pathway (Wang et al., 2014). The human bronchial epithelial cells (BEAS-2B) 

which were already under the oxidative stress of H2O2 showed higher toxicity in 

response to the low concentration of ZnO NPs compared to unstressed cells (Heng et 

al., 2010). Acute toxicity of ZnO NPs have been estimated in crustaceans (Daphnia 

magna and Thamnocephalus platyurus) and protozoan (Tetrahymena thermophila) 

with the L(E)C50 value of 1.1 and 16 mg/l, respectively (Blinova et al., 2010). In C. 

elegans the LC50 value for 10 nm ZnO NPs was found to be >0.7 g/l, that of <25 nm 

and <100 nm ZnO NPs were 0.32 mg/l and 2 mg/l respectively (Khare et al., 2011). 

Acute exposure (24 h) of ZnO NPs in C. elegans, induces reproductive toxicity and 

significant expression of stress-responsive gene such as mtl-1 and sod-1 (Khare et al 

2015; Gupta et al., 2015). Chronic exposure (48 h and 72 h) of ZnO NPs (50 and 500 

µg/l) on C. elegans led to increases ROS production and significantly reduced body 

bends as well as ATP levels thus, exert higher metabolic and locomotive toxicity 

compared to ZnCl2 (Huang et al., 2017). In C. elegans exposure to ZnO NPs (61.4 

μM) led to altered gene expression related to apoptotic pathways and induced more 
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apoptosis compared to ZnCl2 (O’Donnell et al., 2017). Additionally, in plant-feeding 

nematodes Xiphinema vuittenezi the uptake and toxicity of nano-ZnO were higher 

than bulk-ZnO and ZnSO4. Further, the toxicity of NPs was the combined effect of 

nano-specific and dissolved Zn in nematode (Sávoly et al., 2016). 14 days exposure of 

ZnO NPs in earth worm Eisenia fetida was acute and it showed a negative impact on 

reproduction (Canas et al., 2011). While, 7 days exposure of ZnO NPs in earth worm 

Eisenia fetida caused bioaccumulation, mitochondrial damage, alteration in 

antioxidative enzymes level and DNA damage (Hu et al., 2010). In marine brine 

shrimp (Artemia salina) larvae exposure to ZnO NPs caused significant increase in the 

lipid peroxidation (Ates et al., 2013). Exposure of ZnO NPs in murine macrophages 

(in-vitro) induces intracellular ROS generation and expression of NF-kB transcription 

factor. While, ZnO NPs exposure in male ICR mice (in-vivo) induces a gain of body 

weight, reduction in organ weight, dose-dependent alteration in organs histopathology 

and in biochemical parameters (alanine aminotransferase) (Hong et al., 2013).  

Moreover, mammalian toxicity studies showed that exposure of ZnO NPs induced 

inflammatory responses, alteration in enzyme activity and genotoxicity on mice, rat 

and human respectively (Bahadar et al., 2016; Slama et al., 2015; Rim et al., 2013).

The toxicity of TiO2 and ZnO NPs depend on their size, structure, morphology, 

concentration, exposure dose/duration/medium or the test model used for the 

experiment. The adverse effects of NPs have been well studied in both in-vivo and in-

vitro system (table 1.3). The studies in this field so far has established that both TiO2 

and ZnO NPs induced toxicity by either getting deposited on the cell membrane or by 

penetrating into the subcellular organelles thereby inducing ROS generation and 
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oxidative stress signaling cascades (Saliani et al., 2016; Dubey et al., 2015; Sabella et 

al., 2014; Manke et al., 2013), followed by genotoxicity, cytotoxicity, apoptosis, and 

inflammatory response (Shah et al., 2017; Saliani et al., 2016; Khare et al., 2015; 

Dubey et al., 2015; Wang et al., 2014; Kim et al., 2010). Since the ROS generation is 

the major cause behind the NPs mediated toxicity, the intracellular antioxidative 

defense system tries to cope up with the toxicity.  If the system is not able to maintain 

the balance between the free radical generation and its removal, an antioxidant 

supplement can be used as prevention. It has been suggested that fruits, vegetables, 

and plants are the main source of antioxidant in the diet. Natural antioxidants may 

have free-radical scavengers, reducing agents, complexes of pro-oxidant metals, 

quenchers of singlet oxygen etc. In Asian history, as a natural remedies turmeric, 

honey, lemon, ginger, basil, curry leaves, fenugreek seeds, Indian malabar leaves, red 

silk cotton tree leaves, cowitch leaves, holy fruit tree leaves, and black mustard seeds  

etc were used against oxidative stress, toxicity, infection, inflammation, as an anti-

ageing agent, food preservatives etc. Nowadays, the use of natural 

products/antioxidants in oxidative stress or in diseases condition is gaining lots of 

scientific attention because they are affordable, economic and easily available with 

minimum side effects. 

Table 1.3 Adverse effects of TiO2 NPs and ZnO NPs

NPs Target Effect Reference

Human glial
Cells C6 and U373

↑ OS, ↑ MD Huerta-
Garcia et al., 
2014

TiO2 NPs

WAG cell line Acute toxicity, ↑ DNA Dubey et al., 
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(from gill tissue of 
Wallago attu)

damage, ↑ OS 2015

Chinese hamster lung 
fibroblast cells

↑ Cytotoxicity, 
↑ apoptosis/necrosis

Hamzeh  et 
al., 2013

Whole human blood
Model

Thromboinflammation, 
generation of bradykinin (fuel 
for chronic inflammation)

Ekstrand-
Hammarstro
m et al., 2015

Blood plasma ↑ Cytotoxicity, ↑ ROS Ganapathi et 
al., 2015

Escherichia coli ↑ OS, ↑ DNA damage, 
↑ cytotoxicity

Kumar et al., 
2011

Fungus Pichia pastoris ↑ Cytoxicity, ↑ OS Yu et al., 
2015

Raphidocelis 
subcapitata

↑ MDA,  ↑ mortality, ↑ 
membrane deformation

Ozkaleli and 
Erdem, 2018

Dunaliella tertiolecta Growth alteration, cell
entrapment and agglomeration 
of NPs

Manzo et al., 
2015

Daphnia magna ↑ Acute toxicity, 
↑ agglomeration

Seitz et al., 
2015

C. elegans LC50 of 77 mg/l Khare et al., 
2011

C. elegans Altered physiology (lethality, 
growth, reproduction, and 
locomotion behavior)

Wu et al., 
2013

C. elegans ↑ ROS, ↓ reproduction, altered 
metabolites level, neuronal 
damage

Ratnasekhar 
et al., 2015

Juvenile Carp 
(Cyprinus carpio)

↑ OS, ↓ AEA, ↑ hepatotoxicity Linhua et al., 
2009

Earthworm Eisenia 
fetida

↑ Bioaccumulation, ↑ MD Hu et al., 
2010

Zebra fish (Danio 
rerio)

↓ Growth, ↓ liver weight ratio, 
Accumulation in gills, livers,
brains and heart tissues

Chen et al., 
2011

Mice ↑ ROS, ↑ glucose level Hu et al., 
2015

Mice ↑ Chromosomal aberration,
 ↓ ADM

Rizk et al., 
2017

Male Wistar rats ↑ Hepatic and renal damage Vasantharaja 
et al., 2015

Wistar rats Alteration in hepatic tissue, Younes et al., 
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accumulation, alter the 
neurobehavioral performance

2015

Tomato ↓ Growth, ↓photosynhetic ability Tiwari et al., 
2017

Wheat ↓ Biomass of wheat, significant 
changes in soil enzyme activities

Du et al., 
2011

WAG cell line
(from gill tissue of 
Wallago attu)

↑ Acute toxicity, ↑ DNA
damage, ↑ OS

Dubey et al., 
2015

Pseudomonas sp., 
human promyelocytic 
leukemia cells, and 
peripheral blood 
mononuclear cells

↑ Cytoxicity, ↑ OS, ↑ genotoxic Soni et al., 
2017

MRC5 Human lung 
fibrobasts and 
Drosophila melanogaster

↑ Cytoxicity, ↑ OS, ↑ genotoxic Ng et al., 
2017

Escherichia coli ↑ OS, ↑ DNA damage, 
↑ cytotoxicity

Kumar et al., 
2011

Microalgae 
pseudokirchneriella 
subcapitata

72 h, EC50 =0.04 mg/l Aruoja et al., 
2009

Daphnia magna 48 h, LC50 =1.02 mg/l, feeding 
inhibition, ↓ reproduction 

Lopes et al., 
2013

C. elegans  LC50 of 0.32 mg/l, ↑ cytotoxic, ↑ 
genotoxic, ↑ OS

Khare et al., 
2015; Khare 
et al., 2011 

C. elegans Affect survival in size dependent 
manner, gene expression of mtl-1 
and sod-1 

Gupta et al., 
2015

C. elegans ↓ Body bends, ↓ ATP level Huang et al., 
2017

Earthworm Eisenia 
fetida

Bioaccumulation , ↑ MD Hu et al., 
2010

Cyprinus carpio carp ↓ ADM, ↑ OS Hao et al., 
2012

Nile tilapia ↑ OS, ↓ SOD, ↓ CTL, ↓GPx Abdelazim et 
al., 2018

Wistar rats ↑ AST, ↑ ALT, ↑ morphological 
changes in rat tissues

Ben-Slama et 
al., 2015

ZnO NPs

Male Wistar rats Significant changes in liver 
enzymes, liver and renal tissue 
damage, sperm quality and 

Abbasalipour
kabir et al., 
2015
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quantity, ↑OS
Rice Seed Oryza sativa 
L

Stunt roots length,reduce 
number of roots, phytotoxicity

Boonyanitipo
ng et al., 2011

Wheat Reduced biomass of wheat, 
significant changes in soil 
enzyme activities

Du et al., 
2011

↑ = Increased level, ↓= Decreased level, OS= Oxidative stress, MD= 

Mitochondrial dysfunction, AEA= Antioxidative enzymes activity, ADM= 

Antioxidant defense mechanism, ROS= Reactive Oxygen Species, MDA= 

Malondialdehyde, ALT= Alanine aminotransferase, AST= Aspartate 

aminotransferase 

1.2  ANTIOXIDANTS

All living organism utilizes antioxidants, either synthesized by them or supplemented through 

diet, to prevent cell damage from free radicals. Free radicals are the most reactive form of the 

chemical, mainly derived from oxygen, nitrogen and sulfur molecules such as hydrogen 

peroxide, hydroxyl radical, superoxide anion, nitric oxide, singlet oxygen, hypochlorite 

radical, lipid peroxides etc. Predominantly generated as a byproduct of mitochondrial electron 

transport chain in normal physiological condition and play a significant role in biological 

process such as cell signaling, apoptosis, gene expression, ion transportation (Zhang et al., 

2016; Sewelam et al., 2016; Lu et al., 2010). Free radicals with an unpaired electron are 

highly reactive and either damage bio-molecules or passes unpaired electron to another 

recipient molecule turning recipient in to a free radical. Antioxidant defense system includes 

antioxidant enzyme such as super oxide dismutase, catalase, glutathione peroxidase, 

glutathione-S-transferase, which help in maintaining the equilibrium between the production 

and clearance of ROS inside the organism. Antioxidants neutralize the unpaired condition of 
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free radical by accepting or donating the electron, thus maintaining the balance. In adverse 

conditions animal is unable to manage this balance. Uncontrolled ROS production is 

considered to be deleterious for cell organelles for it disturbs cell signaling or cellular redox 

and causes oxidative stress culminating in apoptotic conditions. In stress condition cell try to 

defend against the stress and activates antioxidative defense  pathways which includes 

antioxidant enzyme such as super oxide dismutase (SOD), catalase (CTL), glutathione 

peroxidase (GPx), glutathione-S-transferase (GST) and low molecular weight antioxidant 

molecules such as ascorbic acid, glutathione, tocopherols, carotenoids, and flavonoids etc. 

Antioxidative enzyme SOD react with super-oxides/lipid-oxides and convert it into hydrogen 

peroxides (H2O2) which is further converted in to water and oxygen by CTL.  Similarly, 

reduced glutathione (GSH) donates its reducing equivalent (H++ e−) to free radicals and 

neutralizes them by oxidizing itself. This reaction is catalysed by GPx enzyme. Oxidized 

GSSG is further converted in to GSH in the presence of glutathione reductase enzyme. 

Antioxidant supplement in stress condition is beneficial and help to minimize free radical 

generation as well as its concentration in cells. Antioxidants are classified based on their 

solubility, occurrence, reactive groups, essential or nonessential etc.  

Types of antioxidants: antioxidants can be classified into three major groups phytochemical, 

vitamins and enzymes. 

(i) Antioxidant enzyme: Some protein/enzymes have antioxidant properties. 

Human body can majorly synthesize these enzymes and others are taken up in 

diet. They are superoxide dismutase (SOD), glutathione peroxidase (GPx), 

glutathione reductase (GR), and catalases.
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(ii) Antioxidant vitamin: Antioxidant vitamins are essential obtained from dietary 

sources, since human cannot produce them. Common antioxidant vitamins are 

folic acid, vitamins A, C, E, and beta-carotene.

(iii) Antioxidant phytochemicals: Phytochemicals are naturally found in plants, 

such as carotenoids, flavonoids, allyl sulfides, polyphenols. 

Application of antioxidants: 

In intracellular and extracellular environment antioxidants detoxify ROS and work as a free 

radical scavenger, hydrogen/electron donor, peroxide decomposer, singlet oxygen quencher, 

and metal-chelating agents (Das and Roychoudhury, 2014; Mates, 2000). High ROS 

generation or low functionality of antioxidants is the marker of oxidative stress condition 

which can lead to diseases conditions. Hence use of natural and synthetic antioxidants in such 

condition has been extensively studied. The potential application of antioxidants in various 

field have been reviewed in many studies (Mut-Salud et al., 2016; Szymanska et al., 2016).

(i) Antioxidants in food: Antioxidants have wide application spectrum.  During 

the food processing or storage process naturally occurring antioxidants are lost. 

Thus, intentionally antioxidants or precursor of antioxidant are added to retain 

the product stability (Sani, 2016). Antioxidants are used as additives in oil and 

fat to prevent food from spoilage (Tagliafierro et al., 2015). Studies have 

indicated that spices and some herbs are good sources of antioxidants hence they 

or their extract are added to the products to increase their qualities such as 

aroma, taste, appearance and shelf-life (Kumar et al., 2015). Some synthetic and 

natural phenolic antioxidants [butylated hydroxyanisole (BHA), butylated 
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hydroxytoluene (BHT), and propyl gallate] behave as a chelating agent or 

reducing agent thereby inhibiting oxidation reaction (Shahidi and Zhong, 2010).

(ii) Medical application: Numerous studies have focused on the therapeutic 

properties of antioxidants (Mut-Salud et al., 2016; Szymanska et al., 2016). 

Compounds such as lanthanides (a coordinated compound with antitumour 

activity), selenium (an essential cofactor for antioxidant enzyme), flavonoids 

(plants polyphenols), lycopene and glutathione (intracellular antioxidant 

enzyme) have anticancerous properties (Sharma et al., 2016; Bhuvaneswari et 

al., 2014). Clinical trials performed on hepatocellular carcinoma patients have 

confirmed the protective role of antioxidants such as vitamin C, E etc in hepatic 

injury (Singal et al., 2011). The cerebellum which controls various motor 

activities in body is highly sensitive to ROS resulting in neuronal degeneration, 

hence antioxidant play an important role in delaying the progression of 

neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease 

and amylotrophic lateral sclerosis (Sharma et al., 2016; Bhuvaneswari et al., 

2014). Oxidative stress can damage the normal physiological balance of body 

and induce chronic diseases such as rheumatoid, arthritis, cardiovascular 

disorders, ulcerogenesis and immunodeficiency. Thus, antioxidanthave been 

tried by many researchers for the control/treatment of various diseases (Sharma 

et al., 2016; San Miguel et al., 2013; Singal et al., 2011). 

(iii) Antioxidants in cosmetics: Due to increased outdoor activities human skin is 

damaged by ultra violet (UV) rays, air pollutants and smoke, which leads to the 

generation of ROS, oxidative stress and ageing. It has been shown that 
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combination of organic, inorganic formulation with vitamin derivatives such as 

retinyl palmitate, ascorbyl tetraisopalmitate, tocopheryl acetate and plant 

extracts such as ginkgo biloba, Brazilian Araucaria angustifolia and phorphyra 

umbilicalis provide increased protection against UV radiation (da Mota et al., 

2014; Gianeti and Maia Campos, 2014). Hence antioxidants are used in 

cosmetics for its protective effects against ageing (Bogdan Allemann and 

Baumann, 2008).

Adverse effects of antioxidants: antioxidants confer many health benefits but at the same 

time they can be dangerous too (Villanueva and Kross, 2012; Kizhakekuttu et al., 2010). A 

study investigated that high dose of vitamin C reduces the efficiency of some anti-cancerous 

drugs (methotrexate, doxorubicin and imatinib) and in turn promote survival of cancerous cell 

(Heaney et al., 2008). A review by Bjelakovic comprises about 80 studies on the clinical trial 

of antioxidants (vitamin A, C, E, beta-carotene and selenium) where high dose of vitamin E, 

beta-carotene or vitamin A, than recommended dietary dose (700 µg for women and 900 µg 

for men), increased mortality rate and thus, was found to be harmful for both healthy as well 

as diseased human (Bjelakovic et al., 2012). National center for complementary and 

integrative health have highlighted some studies on the adverse effect of antioxidant 

supplement such as high dose beta-carotene increases the risk of cancer in smokers while 

high dose of vitamin E increases risk of hemorrhagic stroke and prostate cancer, vitamin E 

caused bleeding in patients on anticoagulant medication    

(https://nccih.nih.gov/health/antioxidants/introduction.htm#ususe).

1.2.1 Antioxidants against metal toxicity:

https://nccih.nih.gov/health/antioxidants/introduction.htm#ususe
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Metals are ubiquitous in our environment and essential for biological functioning in 

all living organism in trace amount. Toxic effects of metals in certain forms and dose 

have been proven as a major threat associated with several heath risks. Metal exposure 

in human causes renal, lung, kidney diseases, also induces cancer and physiological 

damage (Ihmed, 2016; Zhai et al., 2015). Metals such as Fe, Co, Cr, Cu, etc. disturbs 

redox cycling and produces reactive free radicals leading to oxidative stress in the 

biological system. Various studies have indicated that ROS production and 

mitochondrial dysfunction are the major consequences of metal induced toxicity 

which further causes disturbance in antioxidant defense system, leading to activation 

of transcriptional factors, DNA damage, lipid peroxidation, immune responses, 

genotoxicity and in some cases induces cancer (Mazdeh et al., 2016; Sabella et al., 

2014). Therefore, to retrieve the toxic effects of metals researchers have employed 

antioxidant supplements.

 In in-vitro, the therapeutic properties of pure garlic acid were evaluated in human 

embryonic kidney cells (HEK 293) against cadmium toxicity (Boonpeng et al., 2014). 

Antioxidant mixture of resveratrol, ferulic acid, phloretin and tetrahydrocurcuminoids 

ameliorate adverse effects of Cu, Ni and Zn exposure on oral fibroblasts by increasing 

cell viability, DNA synthesis and decreasing ROS generation (San Miguel et al., 

2013). Mexidol, carnosine, N-acetyl cysteine were found to mitigate lead, cadmium, 

cobalt, and molybdenum induced cell death in human neuroblastoma SH-SY5Y cells 

(Kulikova et al., 2016). Similarly, in the presence of thymoquinone, spirulina, gallic 

acid and vitamin C supplement, significant prevention against lead and arsenic 

induced oxidative stress has been reported in rat liver, kidney, blood and plasma 
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(Firdaus et al., 2016; Reckziegel et al., 2016; Zhai et al., 2015; El-Tantawy, 2015). 

Further, vitamin C and quercetin were identified for their protective efficacy against 

nicotine induced toxicity in the blood of Wistar rat (Paunovic et al., 2016). Reno-

protective effect of zinc and/or vitamin E against lithium-induced nephrotoxicity was 

evidenced by histopathological and biochemical parameter in male rat (Omar et al., 

2016). by Pistacia lentiscus oil (a shrub) was found to ameliorate sodium arsenate 

induced oxidative damage and liver dysfunction in Wistar rat (Klibet et al., 2016). 

Silver nitrate induced oxidative stress and alteration in biochemical parameters were 

mitigated on co-administration of selenium and/or vitamin E in rats (Gueroui and 

Kechrid, 2016).  Protective effects of kolaviron and gallic acid were identified against 

cobalt chloride induced oxidative stress, biochemical and structural damage in heart 

and kidney of rat (Akinrinde et al., 2016). Quercetin and α-tocopherol showed a 

significant reversal of manganese and copper induced reproductive toxicity in Wistar 

male rat (Adedara et al., 2017; Mandil et al., 2016). Similarly, in mice preventive 

mechanism of vitamin E and C has been established on the basis of biochemical 

parameter and histological structures of kidney and testis against metal mixture (Pb, 

Hg, Cd and Cu) toxicity (Al-Attar, 2011; Sharma and Bhattacharya, 2010). 

Antioxidants (green tea, garlic and vitamin C) and arsenic co-exposed mice were 

observed for significant decline in arsenic induced liver and kidney damage (Amer et 

al., 2016). Hepatic and renal toxicity induced by the exposure of lead in rabbit was 

mitigated by the pretreatment of rosemary extract (Mohamed et al., 2016).

The protective efficacy of essential metals, vitamins, edible plants, phytochemicals, 

probiotics and dietary supplements against Cd and Pb toxicity is reviewed by Zhai et 
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al., 2015. This review recommended the intake of essential elements and vitamins in 

daily diet as preventive measures against heavy metal toxicity. Further, dietary 

supplements with the great health advantages were found to have fewer side effects 

than chelating therapy. Another review explained that arsenic interacts with 

sulphydryl groups, and formation of free radical leads to oxidative stress. Chronic 

exposure of arsenic at high concentration in drinking water to human increases the 

risk of skin lesions, peripheral vascular disease, hypertension, blackfoot disease and 

high risk of cancer. However, chelating agent is known for the treatment of arsenic 

toxicity but have their own side effects thus, antioxidant supplement (N-Acetyl 

cysteine, taurine, melatonin, α-Lipoic acid, vitamin-A, E) along with chelating agent 

(British anti-lewisite, 2, 3-dimercaptopropane 1-sulfonate and meso 2, 3-

dimercaptosuccinic acid) may provide a better option for optimal effects (Flora et al., 

2007). Additionally, 34 medicinal plants and 14 natural products were found 

potentially useful against arsenic toxicity in preclinical and clinical trials in human 

(Bhattacharya, 2017). Heavy metals such as arsenic, lead, mercury, and cadmium 

were found to induce oxidative stress which in turn casued hepatotoxicity, 

neurotoxicity, genotoxicity, nephrotoxicity. Natural and synthetic antioxidant was 

suggested as a possible remedy for metal induced oxidative stress and adverse effects 

(Sharma et al., 2014).

1.2.2 Antioxidants against nano-metal oxide toxicity:

Nano form of metal oxides is representative of new generation of material science. 

With enourmous applications of metal oxide nanoparticles (MONPs), their synthesis 
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as well as possible adverse effects are widely studied. In majority of MONPs exposed 

organism, oxidative stress was the hallmark (Mazdeh et al., 2016; Manke et al., 2013) 

which led to further damage at the physiological and biochemical level. Hence, to 

overcome oxidative stress generated due to MONPs, some natural 

antioxidants/compounds have been screened. Antioxidants are generally reducing 

agent which inhibits the oxidation of other bio-molecule and are categorized as 

hydrophilic and lipophilic based on their solubility. Antioxidants are necessary to 

overcome the redox misbalance induced by variety of the toxicant. Amelioration of 

petrol exhaust NPs adverse effects such as lipid per-oxidation and increased anti-

oxidant level has been witnessed in erythrocyte by pre-treament of fenugreek leaf 

extract and quercetin (Durga et al., 2015). Similarly, cyto-protective effects of 

quercetin (50 µmol/l) against cyto-toxicity and apoptosis induced by Fe2O3 NPs (250 

µg/ml) in murine hepatocytes was also noticed (Sarkar and Sil, 2014). Protective 

effect of vitamin E (0.01-2 mM) against the adverse effects by single-walled carbon 

nanotubes (SWCNTs) has been reported in neuronal cells PC12 cells, where presence 

of antioxidants led to increased cell viability and decreased oxidative stress and 

apoptosis (Wang et al., 2012). Polyphenol antioxidant danshensu (isolated from 

Chinese herb) is reported to reduce the cytotoxicity and oxidative stress induced by 

non-coated gold particle by quenching free radicals in mouse blood cells (Du et al., 

2013).  Dietary supplement with 5 mM N-acetyl-l-cysteine or over expression of 

SOD-3 retrieved Al2O3-NPs chronic exposure adverse effect of reduces locomotion 

and oxidative stress in C. elegans (Li et al., 2012). 
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Neurotoxic effect of silver oxide NPs on rat was ameliorated by the protective effect 

of vitamin E as evaluated by significant loss in body weight and destruction of the 

granular layer of the cerebellum (Yin et al., 2015). Green tea exhibit neuro-protective 

effects in rats against MnO2 NPs (Sarkozi et al., 2017). Glycyrrhizic acid a sweet 

constituent of Glycyrrhiza glabra (liquorice) root has hepatoprotective and 

antioxidant effect against TiO2 NPs induces hepatic injury and oxidative stress in rats 

(Khorsandi et al., 2015). Idebenone, carnosine and vitamin E administration either 

individually or in combination was found to efficiently ameliorate the alteration in 

biomarkers and histopathological changes in the liver on exposure to TiO2 NPs (Sanna 

et al., 2015), in addition to this, the antioxidants significantly reduces inflammatory 

response and activation of apoptosis in male albino mice (Azim et al., 2015). Co-

administration of quercetin or L-arginine with ZnO NPs alleviates the biochemical 

marker of hepatic toxicity, pro-inflammatory markers, tissue damage, DNA damage 

and metabolic disorder in Wistar albino rats (Baky et al., 2013). Similarly, the 

protective effects of quercetin and arginine against ZnO NPs-induced nephrotoxicity 

in Wistar albino rats has also been reported based on parameters such as serum 

inflammatory markers, serum urea and creatinine levels, reduced glutathione (GSH), 

histopathological alteration in kidney (Faddah et al., 2012). ZnO NPs induced renal 

toxicity in Wistar albino rats were ameliorated on co-administration of vitamin E and 

α-lipoic acid based on parameters such as level of endothelium growth factor, nitric 

oxide, inflammatory marker, blood glucose, serum urea, and creatinine in serum and 

levels of GSH in renal tissue (Rasheed et al., 2012).  Co-administration of B-vitamins 

(B3, B6 and B12) along with ZnO NPs ameliorates hepatotoxic effect of ZnO NPs.  

https://en.wikipedia.org/wiki/Liquorice
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B-vitamins maintain the level of various biomarkers such as alanine aminotransferase, 

aspartate aminotransferase, lactate dehdrogenase, glucose level, malondialdehyde, 

glutathione peroxidase, apoptotic marker and inflammatory markers, near to control 

(Yousef and Mohamed, 2015). Green tea extract rescue rats from copper nanoparticles 

induce hepatotoxicity, oxidative stress, genotoxicity and apoptosis (Ibrahim et al., 

2015).  Pretreatment of vitamin E (200 mg/l) mitigates of Al2O3-NPs induces toxicity 

by reducing oxidative stress and intestinal permeability of NPs thus preventing 

translocation of NPs, neuronal and behavior damage in C. elegans (Yu et al., 2015). 

Similarly, anti-amyloid compounds protect against silica NPs induced protein 

homeostasis, protein aggregation and inhibition of serotonin neurotransmission in C. 

elegans (Scharf et al., 2016). Natural organic matter such as fulvic acids from 

Suwannee river or Pony lake is reported to reduces silver NPs induced toxicity in C. 

elegans by reducing its intracellular uptake (Yang et al., 2014). Accumulation and 

translocation of graphene oxide NPs from primary organ (intestine and pharynx) to 

secondary organs (reproductive system, tail) affect locomotion, reproduction, life span 

and microRNAs expression (regulatory genes of oxidative stress) of C. elegans. 

While, pretreatment of glycyrrhizic acid, an active compound of glycyrrhizae radix 

prevent graphene oxide NPs induced alteration in C. elegans (Zhao et al., 2016).

1.2.3 Curcumin:

Curcumin is a yellow colour, hydrophobic, active phenolic pigment of turmeric 

(curcuma longa linn or Jiang Huang), found abundantly (~80%) in the class of 

curcuminoids. Curcumin chemically known as Diferuloylmethane, is widely used in 
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spice, health care, food additives and preservation of food in India and other parts of 

Asia. Curcumin was first identified by Lampe and Milobedzka in 1913 and in 

Ayurveda curcumin has long history as a therapeutic agent in diseases conditions. 

Curcumin has many functional groups such as β-diketo group, carbon–carbon double 

bonds and phenyl rings having many hydroxyl and methoxy substituents. Curcumin 

has an excellent free radical scavenger and chain breaking antioxidant ability. The 

phenolic OH group and the CH2 group of the β-diketone moiety provide free radical 

scavenging activity to curcumin. The phenolic OH group is majorly credited for the 

antioxidant activity of curcumin. While the meta-methoxy groups were suggested to 

further increase its antioxidant activity. The reaction of curcumin with the molecular 

oxygen (O2) abstract hydrogen atom from one of the phenolic hydroxyl groups thus 

initiating auto-oxidation of curcumin and generating phenoxyl radical. This phenoxyl 

radical is then reduced by removing a hydrogen atom from another curcumin 

molecule to form hydroperoxide. Subsequently, the hydroperoxide rearranges into the 

spiro-epoxide after losing a water molecule. Epoxide molecule hydrolysed by the 

hydroxyl group resulted in the formation of a stable product bicyclopentadione 

(Nimse and Pal, 2015).  Curcumin is a potent inhibitor of free radicals, lipid 

peroxidation, DNA damage (single and double strand breakage) and nitrite induced 

oxidation of hemoglobin (Asouri et al., 2013, Unnikrishnan and Rao, 1995). Further 

curcumin is found to be more effective antioxidant than beta-carotene, vitamin-E, 

lipoic acid (Guzior et al., 2015; Khalil and Ali, 2011). β-carotene and curcumin co-

adminstration is shown to protects scrotal hyperthermia and associated oxidative 

stress and apoptosis in spermatogenic cells of male mice (Lin et al., 2016).
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High ROS production can modulate the expression of the nuclear factor-κβ (NF-κβ) 

and tumor necrosis factor alpha (TNF-α) pathways which are majorly involved in the 

inflammatory response and thus lead to chronic inflammation and diseases. Curcumin 

can down regulate the oxidative stress and the subsequent inflammatory response by 

the Nrf2 pathway. Curcumin can block TNFα production, NF-κβ signaling (which is 

the primary transcription factor involved in the initiation of the inflammatory response) 

alter the enzymes activity (cyclooxygenase-2, lipoxygenase, nitric oxide synthase) and 

inflammatory cytokines (interleukins (ILs), chemokines) (Fadus et al., 2016). ROS and 

inflammation are related to carcinogenesis processes and act as initiator of cancer. Pro-

inflammatory responses are linked with tumor formation and other neurological 

disorder (Parkinson’s disease). Further, preclinical research on curcumin has showed 

remarkable anticarcinogenic, anti-neurodegenerative properties (Tizabi et al., 2014; 

Lin et al., 2007).   Promising results were obtained when curcumin was used for the 

treatment of cancer (Salem et al., 2014; Gupta et al., 2010). Curcumin is also reported 

to enhance the efficacy of cancer drugs against ovarian cancer and breast cancer 

(Chirnomas et al., 2006), lung cancer (Chanvorachote et al., 2009) and bladder cancer 

(Kamat et al., 2007). Curcumin is a highly pleiotropic molecule with many molecular 

targets such as transcription factors, inflammatory cytokines, kinases, growth factors 

and antioxidant system. Thus, curcumin can be defined as a potent antioxidant, anti-

inflammatory, antimutagenic, anticarcinogenic, antigenotoxic agent. Additionally, 

curcumin was found protective against rheumatoid arthritis, neurodegenerative, 

cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases (Aggarwal 

et al., 2009; Mishra and Palanivelu, 2008). Curcumin was also found to be helpful in 
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improving overall functioning of β-cells in type 2 diabetes mellitus patients 

(Chuengsamarn et al., 2012). Similarly, pre-treatment of curcumin has been reported to 

ameliorate fructose and streptozotocin induces metabolic syndrome and diabetes in rats 

(Bulboaca et al., 2016). 

1.2.3.1 Attenuation of oxidative stress by curcumin: 

Curcumin has been reported to ameliorate toxicity against chemical/compound [H2O2, 

zearalenone, quinocetone (antimicrobial food additive in China)] induced oxidative 

stress related toxicity in in-vitro models, such as astrocytes, human airway epithelial 

cells, porcine granulosa cells, Human SK-N-MC cell line (Daverey and Agrawal, 

2016; Qin et al., 2015). In in-vivo, the protective role of curcumin has been shown 

against hepatotoxicity induced by heavy metals (arsenic, cadmium, chromium, 

copper, lead, mercury, iron), zinc oxide NPs, diethyl nitrosamine, gentamicin, 

acetaminophen, tartrazine; neurotoxicity induced by monosodium-glutamate, 

carbofuran, mancozeb; renotoxicity induced by gentamicin, cadmium; genotoxicity 

and inflammation induced by lead ; reproductive toxicity induced by hexavalent 

chromium ; gasoline and dermal lesion induced by cypermethrin in rats (Akinyemi et 

al., 2017; EL-Desoky et al., 2017; Azab et al., 2016; Khorsandi et al., 2016; Habibian 

et al., 2016; Liu et al., 2016; Lee et al., 2016; Khalil et al., 2016; Jaiswal et al., 2016; 

Saber and El-Aziz, 2016; Ismail and  Salem, 2016; Elsayed et al., 2015; Badria et al., 

2015; Elhalwagy et al., 2015; Kadasa et al., 2015; Garcia-Nino and Pedraza-Chaverri, 

2014; Mahmoud et al., 2014). Similarly in mice, curcumin is shown to attenuate the 

cellular toxicity and genotoxicity induced by sodium fluoride, chromium, 3 Gy γ-rays 

(Sharma et al., 2014; AL-Harbi et al., 2014; Tawfik et al., 2013; Devi and Raju, 
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2012). Additionally, curcumin provides protection against pneumonia infection 

caused by Staphylococcus aureus to mice (Wang et al., 2016). In C. elegans, 

curcumin has been shown to have anti-virulence, antibacterial, antipathogenic effects 

against P. aeruginosa, B. pseudomallei, tauopathies infection (Miyasaka et al., 2016; 

Eng and Nathan, 2015; Rudrappa and Bais, 2008). Further, curcumin exhibit 

therapeutic properties against arsenite and juglone (5-hydroxy-1, 4-naphthoquinone) 

induces neurodegenerative diseases and protect proteins from oxidative damage. 

Additionally curcumin extends the life span of organism (Yu et al., 2014; Yu and 

Liao, 2014; Alavez et al., 2011). In aquatic organism, the protective activity of 

curcumin was evaluated against chromium trioxide in fish Channa punctatus (Prasad 

et al., 2017). Further, dietary supplement of curcumin protects the antioxidant status 

and protein content in Anabas testudineus (Bloch) during long-term feeding (Manju et 

al., 2012). Additionally, beneficial effect of curcumin was reviewed against 

cardiovascular dysfunction and cancer (Kukongviriyapan et al., 2016; Pavan et al., 

2016; Trujillo et al., 2013). Locomotion impairment in zebrafish and Drosophila 

melanogaster was recovered when curcumin was co-exposed with rotenone (Khatri 

and Juvekar, 2016). Similarly, co-exposure of curcumin and rosemary efficiently 

ameliorates gentamicin induced hepatotoxicity in guinea pigs (Azab et al., 2016). 

Thus, curcumin is extensively studied and documented for its beneficiary effect but 

some contradictory reports are also available which states that curcumin induces 

cytotoxicity in healthy cells in non-targeted manner but toxicity of curcumin depend 

on the dose and type of cells lines in cancerous leukemia cells (Ravindran et al., 2009; 

Lantto et al., 2009). Some studies also highlighted the phototoxic effect of curcumin 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5133244/#B124
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(Atsumi et al., 2007). Protective effect of curcumin against various toxicants are listed 

in table 1.4.

1.2.3.2 Attenuation effect of curcumin against ENPs induced oxidative stress:

Recently, few studies have indicated curcumin ameliorates NPs induced toxicity. In 

human airway epithelial (HEp-2) and human breast cancer (MCF-7) cells, curcumin 

supplementation was found to efficiently abolish NiO2 NPs induced ROS generation, 

oxidative stress, DNA fragmentation and apoptosis (Siddiqui et al., 2012). Similarly 

curcumin was found to mitigate oxidative stress mediated toxic effect of long term 

cadmium quantum dots (luminescent nanoparticles used in in-vivo imaging) exposure 

in C. elegans, noticed via the  expression of ROS, SOD, GST and heat shock protein 

HSP-16.2 (Srivastava et al., 2016). Antiviral activity of curcumin modified silver 

nanoparticles (cAgNPs) was significantly higher than silver nanoparticles (Yang et al., 

2016), against the respiratory syncytial virus. Additionally, hepatotoxicity induced by 

ZnO NPs in rat was found to be mitigated by the pre-treatment of curcumin at 200 

mg/kg concentration (Khorsandi et al., 2016).

1.2.4 Ascorbic acid: 

Ascorbic acid or vitamin C is a potent water soluble, essential vitamin and most 

widely used along with all other vitamins (Padayatty et al., 2003). The Recommended 

Dietary Allowances (RDA) for ascorbic acid is 90 mg/day for adult men and 75 

mg/day for adult women (Naidu, 2003). Humans lack L-gulacolactone 

oxidase enzymes necessary for synthesis of ascorbic acid hence it is mainly obtained 

through diet. Ascorbic acid plays an essential role in growth, wound 
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repairing/healing/regeneration (bones, cartilage, teeth etc), produces collagen (a part 

of cartilage) and some principle protein which are involve in the formation of 

ligaments, blood vessels, tendons and skin (Naidu, 2003). Ascorbic acid is reported 

for its various beneficial and therapeutic effects by many researchers. Ascorbic acid is 

required for the synthesis of muscles carnitine (β-hydroxy butyric acid) which is 

important in fatty acids transfer and transportation into mitochondria (Nelson et al., 

1981). Ascorbic acid act as a cofactor for enzymes such as ferrous [Fe(II)] and 2-

oxoglutarate dependent dioxygenases (collagen synthesis), dopamine-β-hydroxylase 

(catalyze the conversion of dopamine neurotransmitter to norepinephrine) and 

hormones such as oxytocin, vasopressin, cholecystokinin and alpha-melanotripin 

(Lykkesfeldt et al, 2014). Ascorbic acid is reported to have anti-cytotoxic and 

anticancerous properties (Subramani et al., 2014; Mamede et al., 2012). Ascorbic acid 

is known to neutralize free radicals thus preventing DNA damage and tumor growth, 

it induces collagen synthesis which prevent tumor invasions to other tissues, further it 

also leads to inhibition of cell proliferation by interfering in cell cycle and insulin-like 

growth factor 1-receptor mediated apoptosis in cancer cells (van der Reest and 

Gottlieb, 2016; Naidu et al., 2001). 

Ascorbic acid is a known sequester of free radical which maintains the antioxidant 

enzyme level in the body. Ascorbic acid in aqueous phase (AscH−) donates a 

hydrogen atom (H· or H+ + e-) directly to oxidizing radicals such as hydroxyl, alkoxyl 

and lipid peroxyl (ROO.) to neutralize them and form H2O, alcohol and lipid 

hydroperoxides. Further ascorbic acid itself produces the resonance-stabilized 

tricarbonyl ascorbate free radical (Asc−•) which is comparatively more stable and do 
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not cause cellular damage. Even the oxidized form of ascorbic acid such as 

semidehydroascorbate, dehydroascorbate etc are relatively stable. Ascorbate free 

radical reacts with NADH or NADPH-dependent reductases to regenerate ascorbic 

acid. 

1.2.4.1 Attenuation effect of ascorbic acid against oxidative stress: Ascorbic acid 

ameliorates H2O2 induced oxidative stress in human chondrocytes (Chang et al., 

2015), protects HL-60 cells (glutathione independent cells to transport or reduce 

dehydroascorbic acid) by generating dehydroascorbic acid (Guaiqui et al., 2001). 

Vitamin C supplement recues HL-7702 cells from dichlorodiphenoxytrichloroethane 

toxicity, which is known to affect viability of cells by inducing ROS generation, 

disrupting mitochondrial membrane potential and cytochrome C (Jin et al., 2014). 

Ascorbic acid mediated protective effect was identified against doxorubicin induced 

genotoxicity (mitotic recombination) in the somatic cells of Drosophila melanogaster 

(Fragiorge et al., 2007). 

Ascorbic acid significantly attenuates butylated hydroxyanisole induced oxidative 

stress in colonic rats determined by level of reduced glutathione, total antioxidant 

activity, malondialdehyde, nitric oxide and validated by histopathological assay 

(Khalil and Ali, 2011). The changes in ROS production in the presence of various 

anticancer drugs at different temperatures in prostate cancer cells was significantly 

ameliorated by the ascorbic acid (Fukumura et al., 2012). Ascorbic acid was found to 

maintain the antioxidant enzyme levels, and nullify the morphological changes that 

occur in lungs and brain of adult albino rat, in response to chronic CdCl2 exposure 
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(El-Sokkary et al., 2011). Imidacloprid insecticide belongs to the class of 

neonicotinoides act as an insect neurotoxin induces ROS generation and disturbs 

antioxidant enzyme regulation in mice. Pretreatment of vitamin C mitigate 

imidacloprid toxicity by reducing lipid peroxidation and maintaining the antioxidant 

defense system (EL-Gendy et al., 2010). Potassium bromated exposure in adult male 

albino rat induced cardiac muscles damage which was found to be ameliorated on 

administration of vitamin C (El-Deeb et al., 2015). Ascorbic acid has many health 

benefits as an antioxidant in biological system against oxidative stress (Chakraborthy 

et al., 2016; Nimse and Pal, 2015; Lu et al., 2010) and they are listed in table 1.4.

Ascorbic acid has low toxicity and does not cause serious damage. However, high 

dose of ascorbic acid increases excretion of urinary oxalate and uric acid which might 

have some role in kidney stone formation, especially in patients of renal disorder 

(Assimos, 2004). Further, vitamin C enhances the availability and absorption of iron 

from non-heme iron sources like in plants where iron is not attached to heme proteins: 

this could lead to iron overload and tissue damage in individuals with hereditary 

hemochromatosis (Jacob et al., 2002). 

1.2.4.2 Attenuation effect of ascorbic acid against ENPs induced oxidative stress:  

In primary rat hepatocytes the ameliorating effect of 22 antioxidants was evident 

against ZnO NPs. All the antioxidant showed hepatoprotective effect against ZnO NPs 

at different extent but propolis, boric acid and ascorbic acid were observed to have 

maximum protection (Turkez et al., 2016). In addition, oral intake of ascorbic acid 

reduces the acute pulmonary oxidative stress and inflammation induced by 
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intratracheal exposure to ZnO NPs in rat lungs (Fukui et al., 2015). Similarly, co-

administration of ascorbic acid along with oral treatment of ZnO NPs significantly 

attenuates histopathological changes and hepatic oxidative damage in rat (Nemenqani, 

2015; Nemenqani et al., 2015). In Wistar rat, ZnO NPs exposure showed dose 

dependent rise in liver enzyme concentration (AST, ALT, ALP) and disruption of 

liver cell membrane, which was potentially minimized in presence of ascorbic acid 

(Somayeh and Mohammad, 2014).  Exposure of fine particulate matter (aerodynamic 

diameter=2.5 µm) induced oxidative stress, inflammation and inhibition of 

mitochondrial gene expression in 16HBE cells (Human bronchial epithelial cells), 

where in addition of ascorbic acid cured cells from respiratory oxidative damage (Jin 

et al., 2015). Ascorbate (vitamin C) and N-acetyl-l-cysteine were shown to  efficiently 

reduce ROS level and boost antioxidant defense system, further it recovers the 

locomotion behavior defects in C. elegans caused by chronic Al2O3 NPs exposure (Li 

et al., 2012). 

Table 1.4 Antioxidative effects of curcumin and ascorbic acid against xenobiotic 

oxidative stress

Compound/Che
mical/Metals

Cells/Organis
m

Biomarkers References

Hydrogenperox
ide

SK-N-MC 
cells

↑ ROS generation, 
↑ LPO, ↑ protein 
peroxidation

Kamarehei et 
al., 2014

Zearalenone Porcine 
granulosa 
cells

↑ OS, ↑ ROS levels, ↓ 
AEA

Qin et al., 
2015

Curcumin

Juglone (5-
hydroxy -1,4- 

C. elegans ↑ ROS generation, 
↑ gene expression of 

Yu et al., 
2014
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naphthoquinon
e)

gst-4 , sod-3, and hsp-
16.2

Paraquat Drosophila 
melanogaster

↑ OS, altered life 
span,

Xiang et al., 
2011

Cadmium and 
chromium

Cyprinus 
carpio carpio 
L

↓ SOD, ↓ GPx, 
↓ GSH, altered level 
of GSSG

Karaytug et 
al., 2014

Chromium 
trioxide

Channa 
punctatus

↑ Micronuclei, 
genotoxic

Prasad et al., 
2017

Cadmium 
quantum dots

C. elegans ↑ ROS, ↑SOD, ↑GST, 
↑ HSP 16.2

Srivastava et 
al., 2016

Ethanol Adult male 
mice

↓ Expression of 
detoxifying genes, 
alteration in blood 
biomarkers, 
histopathology, AEA 
and liver peroxidation

Xiong et al., 
2015

Lindane Adult male 
Wistar rat

↑ LPO, ↓ AEA Singh and 
Sharma, 2011

cis-
Diammineplati
num (II) 
dichloride

Male Wistar 
rat

↑ MDA , ↑ ALT, 
↑AST, ↓ SOD, 
↓ CTL activity

Palipoch et 
al., 2014

Tartrazine Male Wistar 
albino rat

↑ MDA , ↑SOD, 
↑ CTL, ↑GPx, ↑ GSH 

EL-Desoky et 
al 2017

Gentamicin Rat ↑ Serum TNF-α, 
↓ GSH, ↓ GPx,  
↓ SOD

Mahmoud et 
al., 2014

CdCl2 Rat ↑ Adenosine 
deaminase, ↑ 
arginase, ↑LPO,  

Akinyemi et 
al 2016

Cu(II) Rat ↑ OS Huang et al., 
2011

Monosodium 
glutamate 

Male Wistar 
rat

↑Acetyle choline 
esterase

Khalila et al 
2016

Mercury Rat ↑OS, ↑MDA, 
↑apoptosis, ↑serum 
latate dehydrogenase

Liu et al., 
2017

Mercury Rat ↑ LPO, ↓ SOD, 
↓ CTL, ↓ GSH, 
↓ AEA

Agarwal et 
al., 2010
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Hydrogen 
peroxide and 
diethyl maleate

Porcine small
intestinal 
epithelial cell 
line IPEC-J2

↑ Intracellular OS, 
↓ membrane 
integrity, ↓ viability, ↓ 
wound healing 
capacity

Vergauwen et 
al., 2015

Sodium 
arsenite

Human 
lymphocytes

↑ DNA damage, 
genotoxicity

Roy et al., 
2014

ZnO NPs Male rats of 
Sprague-
Dawley strain

↑ROS, ↑cytotoxicity, 
↑OS

Türkez et al 
2016

ZnO NPs Nile tilapia ↑ OS, ↓ SOD, ↓ CTL, 
↓GPx

Abdelazim et 
al., 2018

Dimethoate Clarias 
batrachus

↑ GOT, ↑ GPT, 
↑ ACP, ↑ ALP, 
↑ renal protein

Dubey et al., 
2015

Fenvalerate Male albino 
Wister rats

↑ ALT, ↑ AST, 
↑ MDA, ↓ CTL,  
↓ SOD, hepatorenal 
toxicity

Hussein et al., 
2012

Formaldehyde Male albino 
Rat

↑ MDA, 
hepatotoxicity, 
inflammatory 
responses

Abdulqader 
and Mustafa, 
2014

Formaldehyde Male rat ↑Urea, ↑creatinine Kasnaviyeh 
et al., 2017

Carbon 
tetrachloride

Rat ↑LDH, ↑ alkaline 
phosphatase, ↑totl 
bilirubin 

Rahmouni et 
al., 2017

Dimethoate Rat ↑ MDA, ↓ SOD, 
↓ CTL, ↓ GPx, ↑ OS 
in spermatozoa, 
↓ sperm mobility, 
viability

Ben Abdallah 
et al., 2012

Fluoride and 
Chlorpyrifos

Rat ↓ SOD, ↓ GSH, 
↓ GPx, ↓ CTL, 
↑ MDA, 

Baba et al., 
2013

Nickel and 
Lead

Rat ↑ LPO, ↓ GSH, 
↓ GPx, ↓ CTL, ↑ NO

Das and 
Saha, 2010

Chlorpyriphos 
and Lead 
acetate

Rat ↑ OS, ↑ LPO, ↓ GSH,  
↓ CTL, ↓ SOD,  
↓ GPx, ↓ GST

Nisar et al., 
2013

Ascorbic 
acid

Cadmium Rice (Oryza ↑ LPO, ↓ chlorophyll Chao et al., 
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sativa) 2010
Oxytetracycline Male white 

new zealand 
rabbits

↑ LPO, ↓ GSH, 
↓ CTL, ↓ SOD, 
↓ TAC, induces 
hepatonephrotoxicity 

Abdel-Daim 
and Ghazy, 
2015

↑ = Increased level, ↓= Decreased level, OS= Oxidative stress, MD= 

Mitochondrial dysfunction, AEA= Antioxidative enzymes activity, LPO= Lipid 

peroxidation, ROS= Reactive Oxygen Species, NO= Nitric oxide, GSH= Reduced 

Glutathione, GPx= Glutathion peroxidase, GSSG= Oxidized glutathione, GST= 

Glutathione-S-transferase, MDA= Malondialdehyde, ALT= Alanine 

aminotransferase, AST= Aspartate aminotransferase, SOD= Super Oxide 

Dismutase, CTL= Catalase, GST= Glutathione transferase, HSP= Heat shock 

protein, TNF-α = Tumor necrosis factor alpha, TAC= total antioxidant capacity, 

GOT= Glutamate Oxaloacetate Transaminase, GPT= Glutamate Pyruvate 

Transaminase, ACP= Acid phosphatase, ALP= Alkaline phosphatase, JNK= c-

Jun N-terminal kinases 

Curcumin and ascorbic acid are naturally occuring organic compound with excellent 

antioxdant property. Traditinally these antioxidants are included in diet becaause of 

their beneficial effect and high reducing power. The most remarkable feature of 

curcumin and ascorbic acid is that they have multiple beneficial functions with 

minimum probability of side effects and hence used as a therapeutic agent (Gupta et 

al., 2013; Ohno et al., 2009). Both the antioxidants are in clinical trials for the 

treatment of cancer (Fadus et al., 2016; Mastrangelo et al., 2016). Several reports 

states that these antioxdants scavenge free radicals and rescue biological system from 

heavy metal and metal oxides like arsenic oxide, cadmium oxide, zinc oxide, lead 

oxdie, titanium di-oxide induced toxicity (García-Niño and Pedraza-Chaverrí, 2014; 
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Gupta et al., 2013; Al-Attar, 2011). Therefore with the aim of determining easy and 

economical protection against NPs exposure, the amelioration effect of the 

antioxidants (curcumin and ascorbic acid) against the nano-TiO2 and nano-ZnO 

induced adverse effects were investigated in an in-vivo model organism 

Caenorhabditis elegans.  

1.3  Caenorhabditis elegans: 

      Caenorhabditis elegans is a free-living, microscopic, soil dwelling transparent nematode 

(round worm) belonging to nematoda phylum. Sydney Brenner was a pioneer in the area 

of neuronal development (Brenner, 1974) employing C. elegans. Research using C. 

elegans has helped researchers (Sydney Brenner, John Sulston, Robert Horvitz, Andrew 

Fire, Craig Mello and Martin Chalfie) bag Nobel prizes in Physiology and Medicine in 

the year 2002and 2006 and Nobel prizes in Chemistry in the year 2008. 

1.3a Biology of C. elegans: 

C. elegans is free living, unsegmented, bilaterally symmetrical, transparent nematode, 

about 1mm in length, and has three weeks of life span. C. elegans has 3-4 days of 

reproductive period and by self fertilization produces approximately 200-250 progeny 

in its life span. It has five pair of autosomes (I-V) and a pair of sex chromosomes 

(XX) and if the 6th chromosomes is in XX combination produces hermaphrodite or in 

XO combination produces male C. elegans (Hunt, 2017; Maglioni et al., 2016; Kaletta 

and Hengartner 2006)

https://en.wikipedia.org/wiki/Symmetry_(biology)#Bilateral_symmetry
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Figure 1.2 The anatomy of an adult hermaphrodite Caenorhabditis elegans worm 

(Source: Chege and Mccoll, 2014)

The simple anatomy of C. elegans comprises mouth, pharynx, intestine, gonad, and 

collagenous cuticle. Once food is taken up by mouth, pharynx (worked as muscular 

food pump in head region) pump the food into the intestine where food gets digested 

and it is finally excreted through anus. Cylindrical body of C. elegans is divided into 

outer tube and inner tube by pseudocoelomic space. The outer tube is made of cuticle, 

hypodermis, excretory system, neurons, and muscles, while the inner tube is made of 

pharynx, intestine and gonad. At L4 stage sperm maturation occurs in gonad region 

and in adult stage gonad triggers egg production and oocyte maturation. Mature 

oocytes encourage sperm movement into the spermatheca. In spermatheca sperm 

fertilizes the oocytes, finally the fertilized egg start to develop inside the body. Once 

embryo reaches 30-cell stage it is laid out of the body through vulval opening from 

the uterus. Embryogenesis in worm is completed in two steps (i) proliferation (ii) 

organogenesis/morphogenesis. Embryonic development of worms takes about 14 h 

and post-embryonic development takes about 43 h. An egg contains 558 cells fully 

formed larva in a 3-fold pretzel position inside the eggshell just before the hatching. 

After hatching the L1 molt successively and passes L2, L2-L3, L3-L4 and L4-Adult 

https://en.wikipedia.org/wiki/Pharynx
https://en.wikipedia.org/wiki/Intestine
https://en.wikipedia.org/wiki/Gonad
https://en.wikipedia.org/wiki/Collagen
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(Figure 1.3). Under unfavorable conditions (lack of food, overcrowding and 

environmental stress), the larvae gets arrested in the dauer stage, in which it can 

survive up to several months and revive once conditions are favorable. 

Figure 1.3 Life cycle of Caenorhabditis elegans at 20º C

(Source: Altun and Hall, 2009)

             1.3b C. elegans as a model organism: 

Caenorhabditis elegans has several advantages over the conventional model for first 

tier compound screening. First, the worms have a relatively low cost of cultivation 

because of their small size, rapid life cycle, and short life span (Maglioni et al., 2016; 

Kaletta and Hengartner 2006), which allow screening of thousands of animals on 

microtiter plates (O’Reilly et al., 2014). Second, 60–80% of human genes and 40% of 

human diseases gene have an ortholog in C. elegans (Maglioni et al., 2016; Chen et 
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al., 2013). Third, there are highly conserved biochemical pathways between worms 

and humans (Shaye and Greenwald, 2011). Fourth, the simple structure of the 

organism along with the ease of genetic manipulations, has led to the availability of 

mutants and RNA interference (RNAi) knockdown (nearly 90% of genome), which is 

an added advantage for mechanistic studies (Watson et al., 2013; Ceron et al., 2008). 

Further, in comparison to in-vitro models, (Fifth) C. elegans harbors a large 

repertoire of scorable phenotypes (O’Reilly et al., 2014), Sixth the multi-cellular and 

multi-organ system complexity existing in a whole organism improves the chances of 

identifying compounds that will ultimately be more efficacious in more complex 

multicellular organisms such as humans (Charao et al., 2015). In fact, several natural 

compounds have been screened in C. elegans to understand their effect on extension 

of the worms’ life span, stress response protein (HSP-16.2), age-related behavioral 

declines and muscle degeneration (Cao et al., 2007; Brown et al., 2006). Further, C. 

elegans is also used for toxicity testing of chemical/compound/metal/nanoparticles 

(Hunt, 2017). Thus, we are using C. elegans to determining the amelioration effects 

of antioxidants against nanoparticles toxicity.

We are screening mitigation of TiO2 and ZnO NPs because in literature, both TiO2 

and ZnO NPs have been used as model compounds to understand the possible 

toxicological implications of exposure to metal oxide NPs (Ratnasekhar et al., 2015; 

IARC 2010; Huang et al., 2010; EPA 2010).  The affect of TiO2 and ZnO NPs 

exposure has been studied in various in-vitro model of mice and human such as 

WAG cell line (Dubey et al., 2015), cell line A549 (Heim et al., 2015), mouse bone 

marrow mesenchymal stem cells (Syama et al., 2014), brain microglia and neurons 
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(Saquib et al., 2012), human amnion epithelial cells (Saquib et al., 2012), human 

epidermal cells (Shukla et al., 2011), human lymphocytes (Ghosh et al., 2010) as 

well as in-vivo rat model such as male Wistar rats (Vasantharaja  et al., 2015), male 

rats (Slama et al., 2015), mice (Xie et al., 2012). In C. elegans (including our lab 

studies) the affect of TiO2 and ZnO NPs exposure noticed, are similar to those found 

in the previous studies. Such as, oxidative stress mediated genotoxicity and 

cytotoxicity (Ratnashekar et al., 2015; Khare et al., 2015; Xiong et al., 2011; Huang 

et al., 2010), behavioral disruption (Khare et al., 2015; Kim et al., 2014) and mis-

regulation of genes related to stress response and apoptosis, as indicated by 

biochemical and microarray studies (Khare et al., 2015; Huang et al., 2010). Majority 

of studies have implicated Reactive Oxygen Species (ROS) generation as the major 

mechanism behind NPs toxicity (Ratnashekar et al., 2015; Cochran et al., 2013; 

Huang et al., 2010; Ramsden et al., 2009,). Hence, we hypothesized that 

antioxidants might help in mitigation of NPs toxicity.

We choose curcumin and ascorbic acid as antioxidants because they are economical 

and traditionally used as a food ingredient in India and other countries. Both, 

curcumin and ascorbic acid have efficiently shown their protective effect against 

various diseases/toxicity (reviewed in He et al., 2015; Harrison et al., 2014; Harrison, 

2012). Extensive clinical trials over the past quarter century have addressed the 

pharmacokinetics, safety, and efficacy of curcumin as nutraceutical against numerous 

diseases in humans (reviewed in Gupta et al., 2013). Curcumin has already cleared 

Phase I of clinical trial for Cancer treatment. On the other hand, ascorbic acid or 

ascorbate is most commonly found water soluble antioxidant in nature. Ascorbate-

http://www.ncbi.nlm.nih.gov/pubmed/?term=Harrison%20FE%5BAuthor%5D&cauthor=true&cauthor_uid=22366772
http://www.ncbi.nlm.nih.gov/pubmed/?term=Harrison%20FE%5BAuthor%5D&cauthor=true&cauthor_uid=22366772
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Glutahione cycle is major mitochondrial non-enzymatic antioxidant cycle in aerobic 

organism. Ascorbic acid is also involved in reduction of oxidized vitamin-E (α-

tocopherol), another major fat-soluble antioxidant. Therefore, the present study is 

focused on elucidating the possible protective effects of anti-oxidants such as 

curcumin and ascorbic acid against adverse effects of NPs in a simple in-vivo model 

system Caenorhabditis elegans [ASTM, 2001]. Such common and well recognized 

antioxidants can provide easy and economically viable options for protecting 

environmental and occupational health. 

Objectives

1. To evaluate the protective role of selected antioxidants against adverse affects of 

TiO2 and ZnO nanoparticles.

2. Evaluate the molecular mechanism underlying antioxidant mediated protection 

against nanoparticles. 

This may have application to cover wider groups of nano metal oxides and may 

provide insights for developing interventional/therapeutic strategies for higher 

organisms, including mammals. 
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Objective 1

Chapter 2

To evaluate the protective role of selected 

antioxidants against adverse affects of TiO2 

and ZnO nanoparticles
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2.1 Introduction

Titanium dioxide NPs (nano-TiO2) and zinc oxide NPs (nano-ZnO) are enormously used in 

field of cosmetics, medicine, food products, plastic, paints, paper, sunscreen, textiles, 

wastewater treatment, UV resistant material, as antibacterials etc. (Bui et al., 2017; Truppi et 

al., 2017; Colombo et al., 2017; Mendez-Medrano et al., 2016). Excessive use/application of 

these NPs enhances their release in to the environment. Studies show the predicted 

environmental relevant concentration (ERC) for nano-TiO2 in surface water is 21 ng/l, in 

sewage treatment effluent is 4 μg/l (Wu et al., 2014) and 0.7 mg/kg in sediment which 

represents a main reservoir for the NPs (Praetorius et al., 2012). The predicted ERC for 

nano-ZnO in surface water is 0.01 μg/l (10% of river stretches in Europe 150 ng/l), in 

sewage treatment effluent is 0.432 μg/l, in sediments is 2.9 μg/l and in sludge-treated soil is 

3.25 μg/l (Dumont et al., 2015; Gottschalk et al., 2009).Therefore, the risk of nanoparticles 

(NPs) exposure is high. In this context, it is crucial to determine the adverse effect of NPs on 

the environment and human and also to determine the possible ways of minimizing the 

impact of NPs.

Nano-TiO2 is known to adversely affect bacteria [Escherichia coli (3 h; LC50 17 µg/ml), 

Vibrio fischeri (18 h; EC50 100 µg/ml; microbial assay for risk assessment)], Rotifers 

[Brachionus plicatilis (48 h; EC50 5.37 µg/ml; less than 10% lethality was observed)], 

crustaceans [Daphnia magna (72 h; EC50 3.8 µg/ml and 96 h; EC50 0.73 µg/ml; 

immobilization test) , zebrafish (96 h; LC50 of 124.5 µg/ml), C. elegans (24 h; LC50 77 

µg/ml) (Lin et al., 2014; Minetto et al., 2014; Xiong et al., 2011; Dabrunz et al., 2011; Khare 

et al., 2011). Similarly, nano-ZnO were also found to cause lethality in bacteria [Bacillus 
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subtilis (LC50 0.3-0.5 µg/ml) Escherichia coli (LC50 15-43 µg/ml)], crustaceans [Daphnia 

magna (48 h mortality; LC50 3.2 µg/ml), Thamnocephalus platyurus (24 h mortality; LC50 

0.18 µg/ml)], zebrafish embryo (5days exposure; LC50 3.5-9.1 µg/ml), C. elegans (24 h; 

LC50 0.45 µg/ml), earthworm Eisenia fetida (96 h; LC50 50 µg/ml) (Wehmas et al., 2015; 

Khare et al., 2015; Li et al., 2011;  Heinlaan et al., 2008). Both the in-vivo and in-vitro 

studies have shown, nano-TiO2 and nano-ZnO induces strong oxidative stress, inflammatory 

response, alteration in antioxidative enzymes level, organelle dysfunction and provoke cell 

death (Kosyan et al., 2016; Chakraborty et al., 2016; Saptarshi et al., 2015; Pandurangan and 

Kim, 2015; Sha et al., 2015; Shi et al., 2013). Majority of these studies have emphasizes on  

reactive free radical generation (reactive oxygen species, reactive nitrogen species and 

reactive sulfur species) as the primary means for adverse effect of NPs (Saliani et al., 2016; 

Mazdeh et al., 2016; Khare et al., 2015; Saptarshi et al., 2015; Pandurangan and Kim, 2015; 

Sha et al., 2015). In the normal course, free radical acts as a messenger for basic 

physiological and biochemical phenomenon, while in an adverse condition they play a vital 

role in generating oxidative stress which in turn leads to inflammation, genotoxicity, 

apoptosis, and cytotoxicity (Zijno et al., 2015; Ivask et al., 2010).

Various natural compounds are known to neutralize the free radicals by exchange of 

electron(s), thereby reducing the damage (Turkez et al., 2016; Nemenqani, 2015; Al-

Rasheed et al., 2015; Fukui et al., 2015; Yousef and Mohamed, 2015; Siddiqui et al., 2012). 

Further, it has been reported that co-exposure of curcumin with nano-nickel oxide rescue 

cultured human airway epithelial (HEp-2) and human breast cancer (MCF-7) cells from 

nanoparticle induced cytotoxicity and oxidative stress (Siddiqui et al., 2012). Similarly, 

ascorbic acid was successfully employed to reduce nano-ZnO induced oxidative stress in the 
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rat (Fukui et al., 2015; Nemenqani et al., 2015). Few other studies have revealed the efficient 

use of natural compounds/chemicals or antioxidants such as quercetin, L-arginine, vitamin B 

and C against nano-iron oxide-mediated oxidative stress and cell death in murine 

hepatocytes cell (Sarkar and Sill, 2014) as well as against nano-ZnO induced oxidative 

damage in rat (Nemenqani, 2015; Baky et al., 2013). Boric acid, propolis, and ascorbic acid 

were found to be hepatoprotective against ZnO NPs induced primary rat hepatocytes (Türkez 

et al., 2016). A majority of the studies focused on the co-administration of antioxidant with a 

particular dose of toxin (not lethal dose) and are limited only up to the specific tissue or 

biochemical marker determination. Recently, curcumin was shown to protect worms from 

cadmium quantum dots induced acute toxicity (Srivatsava et al., 2016). However, there has 

been a lacuna regarding the understanding of the therapeutic value of the antioxidant during 

accidental high dose exposure of nanoparticles or altogether preventing the adverse effects 

by incorporating antioxidants in the everyday diet. Comprehensive information about the 

attenuation ability of antioxidants against nano-induced chronic toxicity has not been 

reported so far. Thus, the present study was carried out with the aim of determining the 

extent of protection that antioxidant (curcumin and ascorbic acid) can confer against 

nano/bulk TiO2/ZnO, chronic/acute exposure using Caenorhabditis elegans. 

Our preliminary studies have also shown lethality and adverse toxicity of nano/bulk TiO2 

and ZnO in Caenorhabditis elegans (Ratnasekhar et al., 2015; Khare et al., 2015; Khare et 

al., 2011) which were similar to those noticed in higher model systems. Therefore, in the 

present study, pre-, post- or along with-antioxidant supplement were given as a measure 

against nano/bulk TiO2 or ZnO, acute/chronic exposure, and both survival, as well as ROS 
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generation, was determined in all cases. This study was carried out with an aim to identify an 

easy and economical way to reduce the toxic potential of the NPs.

2.2 Material & methods

2.2.1 Test organism:

2.2.1.1 Growth medium and solutions:

2.2.1.1.1 Nematode Growth Media (NGM) Agar:

The constituents of NGM are 34.22 mM NaCl, 2% Bactoagar, 0.59% Bactotryptone, 6 

mM Tris-HCl (pH 7.04). The media was autoclaved to sterilize and allowed to cool. At 

~55ºC, 0.02 μM cholesterol was added and mixed well. The media was then poured into 

the petri dish in laminar flow and allowed to solidify at RT. In laboratory, C. elegans 

were propagate and maintained on the Nematode Growth Medium (NGM) agar plates 

with lawns of nonpathogenic Escherichia coli strain OP50 as a food source (Brenner, 

1974).

2.2.1.1.2 Luria Bertani (LB) broth/Agar media: 

2.5 g of LB broth (Himedia) was dissolved in 100 ml DW and autoclaved. Further for 

LB plates 4 g of LB agar (Himedia) was mixed in 100 ml DW and autoclaved. Sterile 

LB agar was poured in 90 mm petri plates. Allow to dry for 2-3 h then covered with 

seran wrap/plastic wrap and stored at RT for further use.

2.2.1.1.3 Bleach (0.5%) solution for egg isolation:

10 N NaOH, household bleach (4% solution of sodium hypochlorite) and autoclaved 

water was mixed in ratio 1:1:8. Due to the tendency of the sodium hypochlorite to 
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degrade over time, the bleaching solution was prepared fresh before every egg isolation 

process.  

2.2.1.1.4 Phosphate Buffer (PB) (pH 7.0±0.2):

1 N KH2PO4 was titrated with 1 N K2HPO4 until the pH 7.0 was reached. The solution 

was autoclaved and stored at RT. 

2.2.1.2 Culture and Maintenance:

2.2.1.2.1 Escherichia coli:

A single colony of E. coli OP50 bacteria was streaked on LB agar plate then allowed to 

grow overnight at 37ºC. From newly streaked plate a single colony of OP50 E. coli was 

inoculated in LB broth and incubated at 37 ºC at 200 rpm, till the culture reaches log 

phase at  OD600 =0.8. 

2.2.1.2.2 Caenorhabditis elegans embryo isolation and maintenance:

C. elegans culture was maintained on the NGM agar plates seeded with Escherichia coli 

OP50, at 20°C in an incubator for 3 days. These plates were harvested by rinsing with 

PBS and collected in a 15 ml centrifuge tube. After centrifugation at 300 X g for 5 min, 

the supernatant was discarded; the worm pellet was treated with freshly prepared 0.5% 

bleach solution and vortexed for 8-10 min. The suspension was again centrifuged at 300 

X g for 5 min and the supernatant was discarded. Bleach treatment kills all life stages of 

worms except the eggs. The egg pellet was washed and centrifuged thrice with PBS and 

subsequently loaded on fresh NGM agar plates seeded with E. coli OP50. After 15-16 h, 

synchronized L1 and 48 h L4 stage worms were harvested by rinsing with water into a 

15 ml centrifuge tube, centrifuged at 300 X g for 5 min and the supernatant was 

discarded (Donkin and Williams, 1995). Pellet was washed 3 more times with water 
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which removes all the bacteria. Thus, pellet obtained contain synchronized L1 and L4 

stage worms and were used for the experiments.  

2.2.2 Test material:

Titanium-(IV)-oxide anatase (TiO2) (<21nm and bulk) and zinc oxide (ZnO) (<50nm 

and bulk) along antioxidants (curcumin and ascorbic acid) were purchased from Sigma-

Aldrich, USA. 

2.2.2.1 Characterization of nanoparticles: 

The stock solutions of 200 μg/ml for TiO2 and 80 μg/ml for ZnO were prepared in 

ultrapure Milli-Q water (Millipore, India) and sonicated for 5 min with 45/15 sec on/off 

pulse (Sonics & Material Inc, Newtown, U.S.A) to obtain a homogeneous suspension. 

The particle size distribution, as well as zeta potential, was analyzed by Zetasizer 

(Malvern Instrument Ltd., UK) and pH was determined by pH meter (Thermo Fisher 

Scientific, USA), for stock suspension. Particle stability in suspension was monitored 

for 0 h, 24 h, and 72 h. The size and compositional analysis of both the particles were 

determined by transmission electron microscopy (TEM, TECHNAI G2, FEI, 

Netherland) and scanning electron microscopy (SEM with EDAX-ApolloXL, FEI 

Company, Netherland), respectively.

2.2.3 Lethality assay:

2.2.3.1 Chronic toxicity: Synchronized L1 stage worms were exposed to five-seven 

concentrations (0-80 μg/ml for TiO2 and 0.1-2.5 μg/ml for ZnO) of NPs and bulk for 72 

h, in the presence of food in ultrapure MilliQ water. To minimize the agglomeration of 

NPs, treatment was given in the ultrapure water with continuous shaking. The 

experiment was repeated thrice. Worms were counted as live and dead by visual 
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inspection under dissecting microscope by gentle probing with Pt-wire (Sonane et al., 

2017). LC50 was calculated by EPA probit analysis.

2.2.3.2 Acute toxicity: Synchronized L4 stage worm 20 (±1) were exposed to five-six 

concentrations (0-500 μg/ml for TiO2 and 0.1-5 μg/ml for ZnO) of NPs and bulk for 24 

h at 20°C without food source in ultrapure MilliQ water (Sonane et al., 2017; Khare et 

al., 2011). Worms were scored as mentioned in 2.2.3.1.

2.2.4 Recovery assay:

2.2.4.1 Antioxidant supplement and chronic toxicity: 

Amelioration from chronic toxicity by antioxidant supplement was assessed by 

exposing age synchronized worms to the LC50 of nano/bulk particles for 72 h. The 

antioxidants were given along with food/nanoparticles and based on antioxidant 

supplement they are categorized into three groups: 

a.    48 h antioxidant supplement: L1 worms exposed to the nano/bulk particles and 

after 24 h  the dead worms were scored and curcumin/ascorbic acid (concentration 

range: 20 µM-140 µM) were added, again after 48 h worms were scored for live and 

dead (total 72 h NPs exposure) 

b.    24 h antioxidant supplement: L1 worms exposed to the nano/bulk particles and 

after 48 h the dead worms were scored and curcumin/ascorbic acid (concentration 

range: 20 µM-140 µM) were added, again after 24 h worms were scored for live and 

dead (total 72 h NPs exposure) 

c.    No antioxidant: L1 worms exposed to nano/bulk particles and after 72 h the 

live/dead worms were scored.

2.2.4.2 Antioxidant supplement and acute toxicity:
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Amelioration from acute toxicity by antioxidant supplement was assessed in two sets of 

the experiment: 

a.    48 h antioxidant supplement: Age synchronized L1 worm, were allowed to attain 

young adult stage, in presence of food along with antioxidants (10 µM-180 µM 

curcumin/ascorbic acid). The pre-treated young adults were exposed to the LC50 

concentration of nano/bulk (TiO2 and ZnO) for 24 h in the presence (10 µM-180 µM 

curcumin/ascorbic acid) and absence of antioxidants. Live and dead worms were scored 

as mentioned in 2.2.3.1.

b.    24 h NPs exposure in presence of antioxidant: Age synchronized L4 stage worms 

were exposed to the LC50 concentrations of nano/bulk at the different concentrations of 

antioxidants (ranging from 20 µM-180 µM curcumin/ascorbic acid). Live and dead 

worms were scored as mentioned in 2.2.3.1.

2.2.5 ROS assay:

Generation of reactive oxygen species (ROS) among nano/bulk exposed worms (with or 

without antioxidant) was determined by 2',7'-dichlorodihydrofluorescein diacetate  

(H2DCFDA). This is a cell-permeable non-fluorescent dye. Worms exposed to 

nonlethal concentrations of rotenone (Sigma-Aldrich, MO) were used as positive 

controls both in acute and chronic experiments. After treatment about 1000 worms from 

control and treated groups were separately transferred into each well of a transparent 

bottom black 96-well plate in triplicates to which 0.05 mM H2DCF-DA dye (Sigma, 

U.S.A) was added and incubated for 30 min on an orbital shaker. Dye enters into a cell 

and gets de-esterified intracellularly. Nonfluorescent dye turns into highly fluorescent 
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2′,7′-dichlorofluorescein upon oxidation. ROS was measured at 485/535 nm in 

Spectrophotometer Spectramax (Molecular Devices, UK) (Ratnasekhar et al., 2015). 

2.2.6 Statistical analysis:

Dose-response curve was plotted based on percent mortality (Microsoft office excel, 

2007) and LC50 was calculated by EPA Probit Analysis Program (Version 1.5). Percent 

survival was determined and survival graph was plotted (Microsoft office excel, 2007). 

Further based on the comparison of % survival of worms in treatment solutions in 

absence/presence of antioxidant, recovery was calculated, assuming 0% recovery for 

treatment group (without supplement). One way-ANOVA and student t-test was carried 

out to compare the differences between groups. Differences were considered 

statistically significant when p<0.05, with Bonferroni posthoc corrections. For ROS 

fold-change was determined and plotted using Excel. Fold change was expressed as 

mean±SEM, fold change of ±0.5 were considered significant. 

2.3 Results

2.3.1 Characterization of nano/bulk TiO2 and ZnO: 

The average particle sizes determined by TEM of nano-TiO2, bulk-TiO2, nano-ZnO, and 

bulk-ZnO were 11 nm, 124 nm, 21 nm and 242 nm respectively (Figure 2.1). SEM-EDAX 

analysis revealed the percent of the chemical composition, for nano-TiO2 (Titanium 47.5%, 

Oxygen 23%, and Carbon 13%) and nano-ZnO (Zinc 65.5%, Oxygen 23%, and Aluminum 

2.9%). The hydrodynamic size of the particle as obtained through DLS is greater than the 

TEM size because it is the size of the particle along with the solvent layer attached to it, as 

the particle moves under the influence of Brownian motion. The hydrodynamic size for 
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nano-TiO2, bulk-TiO2, nano-ZnO, and bulk-ZnO were 240±10 nm, 346±1.7 nm, 153±0.6 nm 

and 1589±213 nm and zeta-potential were found to be -14±0.7 mV,-21±1.6 mV, 22±0.6 mV 

and -19±0.9 mV, respectively. The particle size distribution in exposure medium was found 

to be constant for 0 h, 24 h and 72 h in the absence/presence of antioxidants (table 2.1, 2.2). 

 Figure 2.1 Transmission-electron micrographs of (A) <25 nm nano-TiO2 (B) bulk-TiO2 

(C) <50 nm nano-ZnO and (D) bulk-ZnO 
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Table 2.1 Characterization of nano/bulk TiO2 and ZnO particles 

Physio-chemical 
parameters 

Duration in 
exposure 
medium 

Nano-
TiO2 
<25 nm 

Bulk-
TiO2 

Nano-
ZnO 
<50 nm 

Bulk-
ZnO 

Average particle 
size1 

- 11 nm 124 nm 21 nm 242 nm 

Chemical 
composition2 

- Ti, O, C Ti, O, C Zn, O, 
Al 

Zn, O, Al 

Percentage of 
chemical 
composition2 

- 47.5, 22.6,

 13.1

50.9, 27.1,

 21.9

65.5, 23,

2.9 

75.2, 16.6, 

1.14 

0 h 240±10 346±1.7 153±0.6 1589±213 

24 h 338±37 342±1.9 347±1.4 2283±167 

Hydrodynamic 
size3 

72 h 215±15 345±3.3 345±1.2 1787±158 

0 h 0.18 0.17 0.15 0.37 

24 h 0.26 0.17 0.155 1 

Poly dispersity 
index3 

72 h 0.16 0.17 0.16 0.85 

0 h -14±0.7 -21±1.6 22±0.6 -19±0.9 

24 h -14±0.1 -18±1.9 24±2.1 -14±0.4 

Surface charge3 

72 h -15±0.1 -18±1.5 20±0.04 -14±3.1 

0 h 7±0.03 6±0.14 7±0.2 6±0.1 

24 h 7±0.4 7±0.14 7±0.1 7±0.2 

pH 

72 h 7±0.07 7±0.07 7±0.07 7±0 

1As measured by transmission electron microscopy (TEM) 
2As measured in scanning electron microscope-EDAX (SEM-EDAX) 
3Determined through Zeta Sizer through Dynamic light scattering (DLS) and Zeta potential
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Table 2.2 Characterization of nano/bulk TiO2 and ZnO in the presence of antioxidants (100 µM)

Antioxidants Ascorbic acid Curcumin

Physio-chemical 
parameters 

Duration 
in 
exposure 
medium 

Nano-
TiO2

<25 nm

Bulk-
TiO2

Nano-
ZnO

<50 nm

Bulk-
ZnO

Nano-
TiO2

<25 nm

Bulk-
TiO2

Nano-
ZnO

<50 nm

Bulk-
ZnO

0 h 341±6.3 435±2.3 341±3.3 732±83 333±1.4 446±9.4 132±3 916±90 

24 h 309±3.2 385±17 304±3 3880±82 304±8.4 661±73 122±4.4 689±65 

Hydrodynamic 
size1 

72 h 262±1.8 416±13 262±1.5 2651±15 244±3.7 652±8.9 115±2.1 977±107 

0 h -23±0.4 13±0.05 -27±0.3 -28±0.7 -19±0.3 11±0.14 -27±2.3 -17±0.02 

24 h -26±0.8 14±0.2 -27±1.2 -9±1.1 -24±1.2 9±0.72 -24±0.6 -19±1 

Surface charge1 

72 h -22±0.2 14±0.2 -20±4.3 -10±1.9 -20±0.1 11±4.5 -19±1.3 -19±0.4 

0 h 7±0.07 6±0.07 6±0.07 6±0.2 6±0.1 7±0.1 7±0.1 7±0.3 

24 h 7±0.2 7±00 7±0.2 7±0.14 7±0.2 7±0.35 7±0.4 7±0.4 

pH 

72 h 6±0.07 7±0.14 7±0.0 6±0.07 7±0.4 7±0.42 7±0.01 7±0.3 

1Determined through Zeta Sizer through Dynamic light scattering (DLS) and Zeta potential
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2.3.2 Dose response:

The LC50 values (lethal concentration at which 50% worms were dead) for chronic 

exposure (72 h, L1 to L4) of nano-TiO2, nano-ZnO, bulk-ZnO were found to be 54.2 

μg/ml, 0.18 μg/ml and 0.93 μg/ml respectively, while bulk-TiO2 was found non-lethal 

up to 200 μg/ml. Similarly, the LC50 values for acute exposure (24 h) in young adult 

were found to be 172 μg/ml, 1.125 μg/ml and 4.64 μg/ml for nano-TiO2, nano-ZnO and 

bulk-ZnO. However, bulk-TiO2 was found non-lethal even at the 500 μg/ml (Figure 

2.2).

Figure 2.2 Dose response curve of 72 h and 24 h exposure for (A) nano/bulk TiO2 

and (B) nano/bulk ZnO
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2.3.3 Amelioration effect of antioxidants from NPs induced lethality in C. elegans:

Recovery assay for nano-TiO2, nano-ZnO, and bulk-ZnO was carried out at both acute 

as well as, chronic level in absence or presence of an antioxidant. Bulk-TiO2 being non-

lethal was not employed in this experiment. 

Pre-antioxidant supplement of 48 h (L1-L4 stage) to worms followed by the acute 

treatment of nano/bulk (24 h) in absence or presence of antioxidant(s) did not lead to 

any significant mortality at 20 µM and higher concentrations of curcumin/ascorbic acid. 

However, in worms which recieved10 µM pre-antioxidant supplement followed by 

nano/bulk treatment in presence/absence of antioxidants, the percent survival is 56-69% 

in the absence and 61-70% in the presence of curcumin, while the same is 60-73% in 

the absence and 63-90% in the presence of ascorbic acid compared to respective 

controls (Figure 2.3A). 

In worms, exposed to particles in presence of antioxidants for 24 h, mortality was not 

noticed at 100 µM and above concentration. Whereas at 60 µM concentrations of 

antioxidants significant mortality (p<0.05) was observed with only 40-60% recovery in 

the presence of curcumin as well as ascorbic acid (Figure 2.3B). 
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Figure 2.3 Amelioration of nano-TiO2 and nano/bulk ZnO induced lethality (at LC50 

concentration) in presence of antioxidants (AO). A. Worms pre-exposed to AO for 48 h 

followed by 24 h treatment in absence/presence of AO; B. Worms were exposed to 

nano-TiO2 and nano/bulk ZnO for 24 h in presence of AO; C. AO added to the worms 

at different time duration of chronic exposure (72 h) to nano-TiO2 and nano/bulk ZnO. 

Bars represent mean±SE; Bonferroni corrected *p<0.05
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In the chronic exposure, worms (L1) exposed to LC50 concentration, 12-12.5% mortality 

was scored after 24 h (11.9%, 12.6 % and 12.4% for nano-TiO2, nano-ZnO and bulk-

ZnO particles respectively) and on 48 h exposure 23.5-24.5% mortality (23.6%, 24.4% 

and 23.6% for nano-TiO2, nano-ZnO and bulk-ZnO particles respectively) was 

recorded, finally after 72 h 46-50% death (49.7%, 45.8% and 47.3% for nano-TiO2, 

nano-ZnO and bulk-ZnO particles respectively) was noticed. Further mortality was not 

noticed for any of the treatment (after 24 h or 48 h) on the addition of 60 µM and above 

concentrations of antioxidants (curcumin/ascorbic acid) (Figure 2.3C). On the addition 

of a 40 µM antioxidant, the recovery was hardly 8-13% (curcumin) or 10-20% (ascorbic 

acid), when added after 24 h or 48 h.

2.3.4 Amelioration effect of antioxidants from NPs induced ROS generation:

ROS production in organisms exposed to particle significantly increased in comparison 

to control. Acute exposure to nano/bulk TiO2 and nano/bulk ZnO caused a 6.3-/4.4- fold 

and 7.4-/5.4- fold increase in ROS generation at LC50 concentration, respectively 

(Figure 4). Exposure of worms to a nonlethal concentration of bulk-TiO2 or 0.25 µM 

rotenone [(+) ve control] also showed significant ROS production. Pre-treatment as well 

as along with treatment of antioxidants (ascorbic acid/curcumin) at 20 µM 

concentration was found to completely attenuate ROS generation in case of nano/bulk 

particle but not for rotenone treatment (Figure 2.4A; Control=1).

The acute exposure (24 h) of nano/bulk TiO2 and nano/bulk ZnO at L4 stage worm 

caused a 6.9-/5.3- fold and 7.3-/5.5- fold increase in ROS generation at LC50 

concentration compared to control (Figure 2.4B; Control=1).  Particle exposure in 



Chapter 2                          To evaluate the protective role of selected antioxidants against the 
adverse effect of TiO2 and ZnO nanoparticles

71

presence of antioxidants lead to mitigation of ROS production in worms however, it 

was not complete. ROS production was 4/1.88-fold and 5.1/2.7-fold high when ascorbic 

acid (100 µM) was present along with nano/bulk TiO2 and nano/bulk ZnO treatment, 

respectively in comparision to control. Similarly, when  curcumin (100 µM) was present 

along with nano/bulk TiO2 and nano/bulk ZnO treatment, the ROS generation was high 

by 4.5/2.2-fold, 4.7/2.4-fold, respectively in comparision to control (Figure 2.4B). 

In the chronic exposure (72 h) increase in ROS generation were 2.3-/1.6-fold for 

nano/bulk TiO2 and 4.04-/2.16-fold for nano/bulk ZnO. ROS production was attenuated 

when antioxidant (ascorbic acid/curcumin) at 60 µM concentration was included during 

72 h treatment or added after 48 h or 24 h of nano/bulk particle exposure (determined 

after 72 h). However, in the case of rotenone (0.025 µM), the addition of antioxidant 

(ascorbic acid/curcumin) even though reduced ROS production, but, it was not complete 

(Figure 2.4C; Control=1).
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Figure 2.4 ROS generation in worms on exposed to nano/bulk TiO2 or ZnO particles in 

presence/absence of antioxidants (AO) A. Worms pre-exposed to AO for 48 h followed 

by 24 h treatment in absence/presence of AO; B. Worms were exposed to nano/bulk 

TiO2/ZnO for 24 h in presence of AO; C. AO added to the worms at different time 

duration of nano/bulk TiO2/ZnO exposure. The data is normalized relative to the mean 

control value (Control=1). Bars represent mean±SE; Bonferroni corrected *p<0.05

2.4 Discussion

Unique physiochemical properties of nano-TiO2 and nano-ZnO have enhanced their 

applicability in industrial as well as household utilities (Bui et al., 2017; Truppi et al., 2017; 
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Colombo et al., 2017). More applicability of NPs than respective bulk enhances their 

manufacture on a large scale and consequently their discharge into the environment (Dumont 

et al., 2015; Wu et al., 2014; Praetorius et al., 2012). Thus, raising the global concern related 

to their negative impact on human as well as other organism. Enormous nanotoxicity studies, 

including both in-vivo (Iannarelli et al., 2016; Shi et al., 2013; Hong et al., 2013; Iavicoli et al., 

2012,) and in-vitro (Vinardell et al., 2017; Jimeno-Romero et al., 2016; Saliani et al., 2016; 

Sahu et al., 2016; Pandurangan and Kim, 2015; Hong et al., 2013) concluded that free radical 

generation is the major mechanism behind the NPs induced toxicity. Free radical generated 

subsequently enhances the chances of oxidative stress, DNA damage, cytotoxicity, apoptosis, 

and tumor (Iannarelli et al., 2016; Khanna et al., 2015; Manke et al., 2013). Since the use of 

antioxidant is an important counter measure against oxidative stress, few studies carried out in 

this direction has shown that dietary supplement of antioxidants minimize the free radical 

generation and  provide prevention against ROS induced cytotoxicity (Fukui et al., 2015; 

Pallauf et al., 2013; Siddiqui et al., 2012). However, the ameliorating efficacy of antioxidant 

against NPs induced lethality at chronic and acute toxicity is unexplored.  Thus, the present 

study was undertaken to examine the ameliorating effects of antioxidants (ascorbic acid and 

curcumin) against nano-TiO2 and nano-ZnO induced toxicity employing C. elegans as a model 

organism. C. elegans harbor highly conserved biochemical pathways with humans, hence they 

are used for screening the compounds for their effect on longevity and neuronal degeneration 

(Maglioni et al., 2016; Chen et al., 2013). On similar lines, in the present study, we have 

employed C. elegans for determining the amelioration effects of antioxidants against NPs 

toxicity.
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The particle characteristics such as size, agglomeration, specific surface area, charge and pH 

of nanoparticles suspension are important aspects for toxicological assessment. These features 

affect the dissolution, size distribution, bioavailability, cellular uptake, intracellular 

localization and cytotoxicity caused by the particles. Earlier studies have indicated that small 

size particles (high surface area) with more positive charge are more toxic (Shin et al., 2015). 

In correlation with earlier reports, in the present study nano form were found to be more toxic 

than the bulk form (Khare et al., 2015; Ratnasekhar et al., 2015), and nano-ZnO with positive 

charge was more toxic than nano-TiO2 (Manke et al., 2013; Shin et al., 2015). An adverse 

effect of particle(s) exposure to organism depends on concentration, duration of exposure as 

well as the developmental stage of the organism. In the present study, LC50 of nano/bulk 

particles was lower for chronic exposure compared to acute, indicating higher toxicity values 

for increased duration of exposure for the same particle. Further, NPs exhibited dose 

dependent toxicity as well as nano-ZnO was more toxic compared to nano-TiO2, similar to that 

reported in our previous study (Khare et al., 2011). In both acute as well as chronic exposures 

to NPs, the pre-, post- as well along with antioxidants supplement was found to be protective 

against the NPs induced mortality.  These findings are in corroboration with recent report 

where in curcumin exposure along with cadmium quantum dots ameliorate lethality in C. 

elegans (Srivastava et al., 2016). Thus, during NPs exposure the presence of antioxidant 

curcumin/ascorbic acid gives protection to worms. Our study further shows that pre-anti-

oxidants supplement is efficient in ameliorating nano/bulk particle induced negative effects on 

survival of organism. 

Intracellular ROS generation is required for the regulation of cellular signaling and survival, 

where cell maintain the redox homeoststis by controlling the balance between ROS generation 



Chapter 2                          To evaluate the protective role of selected antioxidants against the 
adverse effect of TiO2 and ZnO nanoparticles

75

and elimination. However, high ROS generation disturb this control and induces cytotoxicity 

depending upon the magnitude, duration and the site of generation (Panieri and Santoro, 

2016). Healthy cells have low basal ROS output and normal metabolic regulation thus able to 

tolerate exogenous ROS stress. Similarly in present study, bulk-TiO2 at nonlethal dose and 

duration of exposure is appears to be tolerable by the organism. On the other hand, the lethal 

concentration of nano-TiO2 and nano/bulk ZnO might cause prolonged accumulation of ROS 

which in turn leads to cellular damage resulting in the cell death, diseases condition and death 

of the organism. However, reduction in ROS accumulation by employing proper antioxidants 

may be a useful strategy to prevent or delay these pathologic processes. High ROS generation 

was evident for both acute as well as the chronic exposure of worms to nano/bulk TiO2 and 

ZnO. To determine the role of ROS in NPs induced lethality we employed antioxidants. 

Curcumin and ascorbic acid are known natural antioxidants which are traditionally used as a 

food ingredient in India and other countries and are also employed against various 

diseases/toxicity (reviewed in He et al., 2015; Harrison et al., 2014). In the present study, 

antioxidant (both curcumin as well as ascorbic acid) was found to have a significant 

ameliorating effect on the NPs induced ROS in exposed worms. Thus, during NPs exposure 

the presence of antioxidant curcumin/ascorbic acid gives protection to worms by reducing 

ROS generation. However, quenching of ROS when antioxidant supplement was given pre- or 

post NPs treatment was complete, however that was not so when it was given along with NPs. 

Thus, overall, low quantity pre-anti-oxidants supplement is an excellent means to acquire 

protection against NPs induced adverse effect. 
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2.5  Summary

 Nano-TiO2, nano-ZnO and bulk-ZnO were found to be toxic to C. elegans.

 LC50 of 24 h exposure (acute) to nano-TiO2 is 172 μg/ml, nano-ZnO is 1.125 μg/ml and 

bulk-ZnO is 4.64 μg/ml.

 LC50 of 72 h exposure (chronic) to nano-TiO2 is 54.2 μg/ml, nano-ZnO is 0.18 μg/ml and 

bulk-ZnO is 0.93 μg/ml.

 Nano-ZnO was more toxic than nano-TiO2 in C. elegans. 

 In both acute as well as chronic exposures to NPs, the pre-(20 µM and above) and post-

(60 µM and above) as well as along with (100 µM and above) antioxidants supplement 

was found to be protective against the NPs induced mortality. 

 In both acute as well as chronic exposures to NPs, the pre-(20 µM) and post-(60 µM) as 

well as along with (100 µM) antioxidants supplement was found to be protective against 

the NPs induced ROS generation.

 Quenching of ROS when antioxidant supplement was given pre- or post NPs treatment 

was complete, however that was not so when it was given along with NPs.

 So far, our study indicates the protective role of curcumin and ascorbic acid against 

nano/bulk particle toxicity and a possibility of evading the nanotoxicity by incorporating 

these antioxidants in the everyday diet.
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Objective 2

Evaluate the molecular mechanism underlying 

antioxidant mediated protection against 

nanoparticles 

Sub objective 

I. To determine the effect of TiO2 and ZnO nanoparticles on 

oxidative stress response pathways and its regulation by 

antioxidants 

II. To evaluate oxidative damage and antioxidant enzyme regulation 

in C. elegans exposed to TiO2 and ZnO nanoparticles in 

presence/absence of antioxidants

III. Functional validation of the protective role of antioxidants against 

the adverse effects of TiO2 and ZnO nanoparticles
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Objective 2

Chapter 3

I.To determine the effect of TiO2 and ZnO 

nanoparticles on oxidative stress response 

pathways and its regulation by 

antioxidants
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3.1 Introduction

Oxidative stress induced signaling pathway alters the normal biological expression of gene 

and protein in in-vivo. The change in transcription and translation level of responsive gene is 

an important biological marker to determine the underlying toxicity mechanism of any 

compound. So far, worms exposed to nano TiO2/ZnO showed elevated ROS production and 

the presence of antioxidants quenched ROS production (Chapter 2). Moving ahead in this 

chapter our aim is to find the effect on oxidative stress response signaling pathway on 

exposure to TiO2/ZnO particles in presence/absence of antioxidants. 

NPs (including nano-TiO2 and nano-ZnO) and heavy metal-induced oxidative stress are 

known to adversely affect insulin/insulin-like growth factor-1 signaling (IIS) pathways as well 

as inflammatory responses in exposed organism (Nemmar et al., 2017; Song et al., 2016; 

Khare et al., 2015; Vigneshkumar et al., 2011; Tvermoes et al., 2010).  C. elegans has an 

evolutionarily conserved IIS-pathway. The IIS-pathway in C. elegans has a single insulin-like 

growth factor receptor (IGFs), DAF-2, (Baugh and Sternberg, 2006). On binding of insulin-

like peptides to a DAF-2 receptor, a signaling cascade leads to, phosphorylation of FOXO 

transcriptional factor DAF-16. The phosphorylation of DAF-16 is mediated by PI3K/AKT-1 

kinases. Phosphorylated DAF-16 is recognized by 14-3-3 proteins PAR-5 and FTT-2 which 

promotes its cytoplasmic retention. Contradictory to this, in stressed condition reduced IIS- 

signaling induces nuclear translocation of DAF-16. In the nucleus, DAF-16 along with other 

transcriptional factors (SKN-1 and HSF-1) controls a subset of genes involved in stress 

resistance, activation of antioxidant enzyme genes, innate immunity and lifespan (Altintas et 

al., 2016). Generally, the moderate reduction in IIS-signaling pathway alters the expression of 

genes which provides stress resistance and increased longevity in C. elegans, where stress 
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response promotes lifespan extension. Therefore the reduced IIS-signaling by genetic 

alteration such as mutation of daf-2 or akt-1 also promotes stress resistance and extend 

lifespan. However, inactivation of daf-16 causes sensitivity to stress and reduced lifespan. 

DAF-16 activation also requires the stress-activated MAPK pathway (Kondo et al., 2005) such 

as p38 and JNK pathway. Three isoforms of p38 PMK-1, PMK-2 and PMK-3 are present in 

C.elegans.  p38 MAP kinase signaling pathway activates SKN-1 and facilitate its nuclear 

translocation where it interacts with other transcriptional factors such as DAF-16, HSF-1 and 

induces the expression of stress protective genes. Whereas, JNK-1 directly interact with 

phosphorylate DAF-16 and promote the nuclear translocation of DAF-16 (Oh et al., 2005). 

Interestingly, the JNK pathway act parallels with the DAF-2 pathway to regulate stress 

resistance and lifespan. Even in mammals phosphorylation of FOXO4 (a member of the 

mammalian FOXO family) is mediated through JNK, in normal conditions. Thus, this 

interaction between the MAPK and insulin/IGF- pathways is functionally conserved among 

species and suggests that signaling pathways for stress response and immune response are 

closely regulated by each other. 

Adverse effects of TiO2/ZnO particles on oxidative stress induced signaling pathways have 

been studied in in-vitro (cell lines; Ghosh  et al., 2016; Pati et al., 2016; Saptarshi et al., 2015) 

and in-vivo (bacteria; Soni et al., 2017),  (C. elegans; Khare et al., 2015),  (Drosophila 

melanogaster; Ng et al., 2017), (rat/mice; Ghosh  et al., 2016; Hong et al., 2016; Saptarshi et 

al., 2015) (plants; Tiwari et al., 2017;  Hossain et al., 2015) models. High oxidative stress and 

alteration in the level of expression of antioxidant enzyme genes was observed in WAG cell 

line (Dubey et al., 2015), human lymphocyte cells (Ghosh et al., 2016), mouse macrophages 

(Pati et al., 2016). The oxidative stress mediated alteration in expression and function of 
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antioxidants on exposure to TiO2/ZnO particles are also reported in in-vivo studies such as, in 

bacteria (Soni et al., 2017; Maurer-Jones et al., 2013),  C. elegans (Khare et al., 2015),  

Drosophila melanogaster, (Ng et al., 2017), rat/mice (Ghosh  et al., 2016; Yang et al., 2015; 

Shim et al., 2014 ,) and plants (Tiwari et al., 2017; Hossain et al., 2015). Further, alteration in 

immune responses was observed in cells (Saptarshi et al., 2015) and rat/mouse (Hong et al., 

2016; Saptarshi et al., 2015; Kononenk et al., 2015; Fu et al., 2014).

Apart from this curcumin and ascorbic acid both can interct with transcriptional factors such 

as nuclear factor erythroid-2 related factor 2 (Nrf2), nuclear factor kappa-B (NF-κB), tumor 

necrosis factor alpha (TNF-α) etc. which play an important role in the regulation of genes 

expression (He et al., 2015). Curcumin and ascorbic acid protect metal (Cd, Hg), particulate 

matter and NPs (TiO2, ZnO, cadmium quantum dots, Al2O3) induced alteration in the  

expression of stress responsive genes/protein in human bronchial epithelial cells,  C. elegans, 

mice, rat and Oreochromis niloticus (Abdelazim et al., 2018; Liu et al., 2017; Srivastava et al., 

2016; Jin et al., 2015; Fukui et al., 2015; Sangartit et al., 2014; Li et al., 2012; Agarwal et al., 

2010). Further, ascorbic acid suuplement affects the expression of several genes relevant to the 

inhibition of cancer (Mikirova and Scimeca, 2016). Therefore, we analyzed the effect of 

TiO2/ZnO particle on IIS-signaling pathway in exposed worms in presence/absence of 

antioxidants. The main aim of this study is to address (i) Whether the oxidative stress noticed 

due to exposure to TiO2 and ZnO leads to disruption in oxidative stress response pathway or 

immune stress response in exposed C. elegans, if so (ii) Whether the presence of 

curcumin/ascorbic acid during treatment ameliorates the same.
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3.2  Material & Methods

3.2.1 Strains employed: The standard N2 strain of C. elegans was employed along with 

the transgenic green fluorescent protein tagged to the promoter of gene of intrest such as 

CF1553 (sod-3p::GFP), CL2050 (hsp-16.2p::GFP), BC20329 (skn-1p::GFP), BC20337 

(hsf-1p::GFP), BC20336 (ctl-2p::GFP) for the detection of gene expression.

3.2.2    Treatment: Age synchronized L4 worms were treated with LC10 concentrations 

of nano-TiO2 (same concentration was applied for bulk-TiO2) and nano/bulk ZnO in 

presence/absence of antioxidants, along with control (water/solvent). The exposure was 

for 24 h duration.

3.2.3    Real-time polymerase chain reaction:

(i) RNA extraction: 

The treated worms were harvested, washed thoroughly with sterile water and collected in 

1.5 ml eppendorf for RNA extraction. The worms were homogenized in 1ml of RNAzole 

RT (Molecular Research Centre, U.S.A) and centrifuged at 5000 rpm for 2 min at 4°C. 

To the homogenate, 0.3 ml of DEPC water was added and incubated at RT for 15 min. 

Again the sample was centrifuged at 12000 rpm for 15 min at 4°C. The supernatant was 

carefully transferred to a fresh eppendrof, without disturbing the pellet. RNA was 

precipitated by gently mixing the supernatant with 400 μl of 75% ethanol. The sample 

was stored at RT for 10 min and centrifuged at 12000 rpm for 10 min at 4°C. RNA forms 

a white pellet at the bottom of the eppendrof. The RNA pellet was washed twice with 

75% ethanol and the pellet was dissolved in 25 µl of DEPC water. Finally, the RNA was 

quantified spectrophotometrically by Nanodrop (Thermo scientific, U.S.A). 
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(ii) cDNA synthesis: 

Single strand cDNA was synthesized from total RNA using the high capacity cDNA 

reverse transcription kit (SuperScript® III Reverse Transcriptase, Invitrogen, U.S.A), 

following manufacturers protocol. In a 0.2 ml thin-walled PCR tube 1 µg RNA, 1 µl 

oligo dT and 1 µl dNTPs were added and the volume was made up to 10 µl.

The mixture was incubated in a thermal cycler at 65°C for 5 min, and then immediately 

placed on ice for at least 1 min. The contents of the tube were collected by brief 

centrifugation. The cDNA synthesis mix containing 2 µl of 10X buffer, 2 µl of 0.1 M 

DTT, 4 µl of 25 mM MgCl2, 1 µl of RNase Out and 1 µl of superscript III was prepared 

by adding the component in the given order. This cDNA synthesis mix was added to the 

RNA mixture and gently mixed. It was subjected to 50 min incubation at 50°C, 5 min at 

85°C and briefly cooled by placing the tube on ice for 1 min. Finally, 1 μl of RNAase H 

was added and incubated at 37°C for 20 min. The cDNA was quantified by Nanodrop 

(Thermo scientific, U.S.A) and was stored at -20°C. 

(iii) Quantitative Real-Time Polymerase Chain Reaction (qPCR): 

Genes involved in oxidative stress and immune response pathways were screened for 

their expression pattern employing the expression of actin gene for normalization. To 

design primers, the gene sequences of C. elegans were retrieved from database and 

primers were designed employing NCBI pick primers program. The primer were 

designed spanning exon. The primer sequences along with gene name are listed in table 

3.1. The PCR conditions were initially standardized and cDNA was screened to check 

genomic DNA contamination, for each primer pair, it was followed by qPCR. The 5 μl 

reaction mixture contained 2.5 μl (1X) TaqMan Universal PCR Master Mix (SYBR 
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Green, Thermofisher), 0.25 μl of 100 μM of each gene primers, 100 μg cDNA and 

nuclease-free H2O. qPCR assay for each gene target was performed in triplicate in 384-

well plates, in QuantStudio™ 6 Flex Real-Time PCR System (Thermo scientific, US). q-

PCR conditions for all the genes were 95°C initial denaturation (10 min); 40 cycles with 

95°C (15 s), 60°C (1 min). Relative transcript levels were calculated using life 

technology Software (Version v1.3) through ΔΔCt method. The gene expression of 

individual sample was subtracted from its actin transcript levels, normalized against the 

control (C=1) and is represented in fold change.

3.2.4 GFP reporter assay (semi-quantitative): 

For detection of gene expression, the transgenic lines with specific gene promoters 

tagged to green fluorescence protein were employed. The transgenic worms were 

exposed to control/treated solutions in the presence/absence of antioxidants for 24 (±0.5) 

h at 20°C. After exposure, worms were washed thrice with milliQ water. To detect the 

transgenic expression, ~1000 worms were taken in each well of black 96 well plate in 

200 μl (PBST), in triplicates. PBST without worms was employed as blank. The GFP 

fluorescence was measured at the 485 nm excitation and 525 nm emission wavelengths 

in spectrophotometer. The GFP intensity of control/treated group subtracted from blank, 

normalized against the control (C=1) and is represented in fold change (Khare et al., 

2015). All the experiments were repeated thrice.

3.2.5 Western blotting:

(i) Sample Preparation:

Worms cultured on 90 mm plates were exposed to nano/bulk particles in the 

presence/absence of antioxidants for 24 h. Worms were harvested, washed thrice with 
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sterile water and twice with sample buffer to remove bacterial and other contamination. 

After washing worms were centrifuged at 3000 rpm for 5 min, extra buffer was removed 

and worm pellet was weighed. Worms pellet was resuspended in sample buffer (4% 

sodium dodecyl sulfate, 100 mM Tris-Cl (pH 6.8), 20% glycerol) to make 10 % of the 

protein sample and boiled for 15 min. This was followed by centrifugation at 1000 g for 

5 min to remove insoluble material from protein samples. The supernatant was collected 

in a tube (Youngman et al., 2011). The sample (20 μl) was loaded into the wells of 

polyacrylamide gel and resolved through electrophoresis. 

(ii) SDS-PAGE casting and sample loading: 

Reagents employed: 

a. 40% acrylamide: A stock solution of 40% acrylamide was prepared by dissolving 39 

g of acrylamide, and 1 g of bis-acrylamide in 60 ml of DW. After the complete 

dissolution of the chemicals, the solution was filtered, and the final volume was made up 

to 100 ml. The solution was kept covered from light, during its storage. 

b. 1.5 M Tris: 90.86 g of Trizma base was dissolved in 450 ml of DW, the pH of the 

solution was adjusted to 8.8 (by conc. HCl), and the final volume was made up to 500 ml 

by DW. 

c. 1 M Tris: 60.57 g of Trizma base was dissolved in 450 ml of DW, the pH was 

adjusted to 6.8 (by conc. HCl), and the final volume was made up to 500 ml by DW. 

d. 20% sodium dodecyl sulfate (SDS): 20 g of SDS was added to 100 ml of DW, and 

the solution was kept overnight at 37ºC for dissolution. 
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e. 10% Ammonium persulphate: 100 mg of ammonium persulphate was dissolved in 1 

ml of DW. 

f.  Staining solution (0.25%): Commasie brilliant blue, CBB (0.25 g) was dissolved in 

40 ml of DW. To this 50 ml of methanol and 10 ml of glacial acetic acid were added, to 

make a final volume of 100 ml. 

g. Destaining solution: For slow destaining of the gel, 25 ml methanol and 7.5 ml of 

glacial acetic acid were made up to 100 ml by DW. For faster destaining the proportion 

of methanol: acetic acid: water was kept at 4:1:5 in the solution. 

h. 5X Running buffer: Tris base (15.15 g), glycine (72 g) and SDS (5 g) were dissolved 

in 500 ml water, and the final volume of the solution was made up to 1000 ml. The 1X 

working solution was prepared by five-fold dilution of the 5X running buffer.

Procedure:

For the preparation/casting of 13% polyacrylamide gel, the lower resolving gel was 

prepared by adding 1.5 M Tris, (pH 8.8; 5.172 ml) to water (8.654 ml). To this solution 

acrylamide (6.864 ml; 40% stock), SDS (156 μl; 20% stock), TEMED (13.8 μl) and APS 

(138 μl; 10% stock) were added. The contents were thoroughly mixed (avoiding 

frothing), and poured in between the glass plates, held tightly in a caster. A layer of 

butanol was dispersed over the casted gel, and the entire assembly was allowed to 

polymerize/solidfy (Ravi Ram et al., 2005). 

Once the resolving gel had been polymerized, the layer of butanol was washed off, and 

4% stacking gel was cast over the resolving gel. The contents of stacking gel included: 1 
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M Tris, (pH 6.8; 1.484 ml), Acrylamide (0.84 ml; 40% stock), water (3.522 ml), SDS 

(89.82 μl; 20% stock), TEMED (6.8 μl), and APS (75 μl; 10% stock). The solution was 

poured over the previously cast and polymerized resolving gel, and combs were placed 

in position for making the wells, for loading the sample. The set up was left for the 

stacking gel to get polymerized. 

The units for the running of the gel were assembled, and the lower/upper tanks were 

filled with 1X running buffer. Comb was removed, the wells were flushed/cleaned, and 

the samples were loaded. To determine the molecular weights of the resolved protein, 10 

μl of a prestained marker (range of 4 kDa to 250 kDa) was also loaded in one of the 

wells. Few of the empty wells, on either side of those carrying samples, were filled with 

the sample buffer. The electrodes were set at 100 V. The bromophenol blue, added in the 

sample buffer, served as a tracker and marked the extent of running the sample in the 

form of a blue streak. The proteins in the sample were resolved depending upon their 

molecular weight.

After the completion of the run, the gel was stained in staining solution overnight, and 

later the stain was replaced by destaining solution, which cleared off all the stain from 

the gel, leaving behind the stained protein bands, resolved all along the gel in a 

descending order of their molecular weight from top (protein with highest molecular 

weight to bottom (protein with lowest molecular weight).
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(iii) Semi-dry blotting: 

Reagents employed: 

a. Semi-dry transfer buffer: Glycine (1.45 g) and Tris base (2.9 g) were dissolved in 

200 ml DW. To this solution, methanol (100 ml), and SDS (0.925 ml of 20% SDS) were 

added. The solution was gently mixed to avoid frothing and the final volume was made 

up to 500 ml with water. The buffer was kept at 4ºC, prior to use. 

b. 5X TBS: NaCl (21.91 g), and Tris base (6.06 g) were dissolved in 400 ml of water, 

pH was set at 7.5 (with conc. HCl), and the final volume of the solution was made up to 

500 ml, with water. 1X TBS was prepared by five-fold dilution of the 5X TBS. 

c. 50 mM Glycine: Dissolved glycine (0.375 g) in 100  ml of DW. 

d. 0.5% Glutaraldehyde: Mixed 500 μl of glutaraldehyde in 100 ml of DW. 

e. 1X TBST: Addition of 0.1% Tween-20 to 1X TBS. 

f. Blocking solution: 5% milk in 1XTBST (5 g skimmed milk powder, standard grade, 

in 100 ml of 1X TBST). 

g. Ponceau Stain: 10 mg Ponceau S; dissolved in 90 ml of water, followed by addition 

of 5 ml acetic acid. The final solution was made up to 100 ml. 

h. Developing solution: Supersignal West Femto maximum sensitivity substrate 

(Thermoscientific) was employed for developing the blot. 150 μl of solution A 

(Luminol/Enhancer) and 150 μl of solution B (stable peroxide solution) were mixed and 
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poured over the blot, for the detection of chemiluminescent signals (from the protein 

bands tagged with HRP) following exposure to light within the Gel Doc. 

Procedure:

Polyvinyl di fluoride (PVDF, Millipore, Merck Life Science, Bangalore, India) 

membrane (of the dimensions marginally larger than that of the gel) was dipped in 

methanol, washed with water, and immersed in semi-dry transfer buffer for 10 min. The 

gel with the resolved protein after the completion of the run was also transferred and 

kept immersed in semi-dry transfer buffer for the same duration as the membrane (10 

min). After this incubation, the membrane and the gel were stacked between semi-dry 

transfer buffer soaked whatman filter wicks (4 wicks on either side of the membrane- gel 

doublet). This stack was placed in the semidry transfer unit, and current equivalent to 0.8 

mA/cm2 of the area of the membrane was applied for 1 h (Ravi Ram et al., 2005). 

The transfer of the prestained marker was indicative of the transfer of the protein profile 

as well, from the gel to the PVDF membrane. In addition, the membrane was incubated 

in 0.1% solution of Ponceau S in 5% acetic acid for 5 min for visualization of the 

transferred protein bands (appeared as pink bands, on the PVDF membrane). The 

membrane was destained by washing it with water for 3-4 times. The membrane with the 

transferred protein profile was soaked in 1X TBS before transferring it to 0.5% 

glutaraldehyde, four times, twice for 5 min and twice again for 10 min. 

This step facilitates inter-crosslinking of the protein with the matrix of the membrane. 

The membrane was then transferred to 50 mM glycine for 10 min, which neutralized the 

glutaraldehyde and impaired further crosslinking. This was followed by a 10 min wash 
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of the membrane with 1X TBS. After blocking for 2 h at 37°C, the membrane was 

incubated overnight at 4°C with primary antibody for specific protein such as JNK (1: 

1000, Santa Cruz Biotechnology, INC.), p-JNK (1: 1000, Santa Cruz Biotechnology, 

INC.),) and β-Actin (1:2000, Sigma, USA) in 1 x Tris-buffer saline with Tween 20 

(TBST). 

The membrane was then washed four times, twice in 1X TBST for 5 min, and again 

twice in 1X TBST for 10 min. The washing was followed by incubating the membrane 

for 2 h at RT with secondary antibody conjugated with horseradish peroxidase (1:4000) 

(Jackson immune research USA) in 1X TBST. The membrane was again washed four 

times as previously mentioned with 1X TBST, prior to developing the signals on to the 

blot. The blot was developed with Supersignal West Femto maximum sensitivity HRP 

substrate (Thermoscientific) and the signals were documented using Versa doc Imaging 

system (Bio-Rad, USA). The blots were developed using β-actin was used as an internal 

control to normalize the data.

3.2.6   Statistical analysis: 

Fold change of the transcript levels of genes and protein increased or decreased by ±0.5-

fold were considered as significantly up- or down-regulated.  Results were expressed as 

mean±S.E.M. and data were analyzed using one-way analysis of variance (ANOVA). 

Probability levels of p<0.05 and p<0.01 were considered statistically significant on 

employing Bonferroni correction. 
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3.3   Results

3.3.1a Effect of TiO2/ZnO NPs on an expression of oxidative stress response genes 

in particle exposed worms:

The expression of oxidative stress response phosphokinases (sek-1, nsy-1, pmk-1), 

transcription factors (TF- daf-2, daf-16, skn-1, hsf-1) and downstream genes (such as, 

sek-1, nsy-1, pmk-1, daf-2, daf-16, skn-1, hsf-1, sod-3, ctl-2, gcs-1, gst-4, hsp-16.2) were 

determined in response to TiO2/ZnO particle exposure.

The phosphokinases such as sek-1, nsy-1 and pmk-1 were significant (p<0.01) up-

regulated by 9-, 2.6- and 8.7- fold, respectively in the worms exposed to nano-TiO2.  

Exposure to bulk-TiO2 lead to significant (p<0.01) up-regulation of pmk-1 by 4.6- fold 

in exposed worms, while others were non-significant in comparison to control (1- fold, 

Figure 3.1A). The stress response genes and their TF, in the worms exposed to nano/bulk 

TiO2, were significantly up-regulated, except for daf-2 which was found to be down-

regulated by 3.69-/2.06- folds respectively.  TF such as daf-16, skn-1, and hsf-1 were 

significantly (p<0.001) up-regulated by 4.44-/2.48-, 2.69-/2.19- fold and 1.95-/1.47- 

fold, respectively (Figure. 3.1B, C), in nano/bulk TiO2 exposed worms in comparison to 

control. The expression of antioxidant enzyme genes which are downstream of DAF-16, 

SKN-1, and HSF-1, were found to be significantly up-regulated (p<0.01). Expression of 

genes such as sod-3, ctl-2, gcs-1, gst-4 and hsp-16.2 was up-regulated by 2.85/1.66, 

2.16-/1.39-, 1.68-/1.46-, 2.75/1.69- and 1.59/1.23- fold, respectively in nano/bulk TiO2 

exposed worms in comparison to control (Figure 3.1B, C).
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Similarly, in worms exposed to nano-ZnO, sek-1, nsy-1, and pmk-1 were significant 

(p<0.01) up-regulated by 2.7-, 16.2- and 12.7- fold, respectively in comparison to 

control.  Exposure to bulk-ZnO lead to significant (p<0.01) up-regulation of nsy-1 and 

pmk-1 by 1.6- and 6.8-fold respectively in exposed worms, while others were non-

significant in comparison to control (Figure. 3.1A). IIS-signaling pathway, in worms 

exposed to nano/bulk ZnO, revealed significant (p<0.01) down-regulation of daf-2 by 

3.57/3.2- fold, while all other genes were significantly (p<0.01) up-regulated. TFs daf-

16, skn-1 and hsf-1 were significantly up-regulated by 3.59/2.84-, 3.58/2.56- and 

2.3/1.72- folds respectively, in comparison to control (Figure 3.1B, C). Expression of 

sod-3, ctl-2, gcs-1, gst-4 and hsp-16.2 was up-regulated by 3.32/2.63, 2.59-/2.0-, 2.99-

/2.15-, 3.69/2.5- and 1.9/1.56- fold respectively, in nano/bulk ZnO exposed worms in 

comparison to control (Figure 3.1B, C). 

Effect on expression of genes screened in worms exposed to nano-TiO2/ZnO was 

significant (p<0.01) in comparison to the same in worms exposed to their respective bulk 

components (Figure. 3.1). 

Further, through protein analysis, the phosphorylated (active) and nonphosphorylated 

form of JNK-1 (MAPK) was measured. A significant increase (p<0.01) in the level of p-

JNK was observed on exposure to nano-TiO2, nano-ZnO, and bulk-ZnO with an increase 

of 1.7-, 2.1- and 2- fold, respectively, in comparison to control (Figure 3.2). The effects 

noticed were non-significant between nano and bulk comparisons. 
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Figure 3.1 Amelioration effects of ascorbic acid and curcumin on nano-TiO2, bulk-TiO2, nano-ZnO and bulk-ZnO induced 

expression of genes in C. elegans. A. Determined through qPCR; B. Determined in transgenic (specific gene promoter 

tagged-GFP) strains of C. elegans. C = control; RC = reference control; n=3, bar = mean±SEM of three independent 

experiments; Bonferroni corrected *p<0.001 = Significant against control; @p<0.001 = Significant recovery (in presence of 

antioxidant) against particle exposure 

A B
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3.3.1b Amelioration effects of antioxidant on the gene expression of organism 

related to stress resistance and immune response: 

In the presence of ascorbic acid and curcumin the expression of all the genes screened 

for oxidative stress response was non-significant compared to control (Figure. 3.1). 

Thus, the presence of antioxidant during nano/bulk treatment led to significant recovery 

in expression of all the genes screened (Figure. 3.1).

Similarly, even at protein level, phosporylated JNK-1 levels in worms treated with 

nano/bulk in presence of antioxidants were non-significant (Figure 3.2) in comparison to 

controls.       
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Figure 3.2 Amelioration effect of ascorbic acid and curcumin on nano-TiO2, bulk-TiO2, 

nano-ZnO and bulk-ZnO induced activation of p-JNK in C. elegans. C = control; RC = 

reference control; n=3, bar = mean±SEM of three independent experiments; Bonferroni 

corrected *p<0.01 = Significant against control; @p<0.01 = Significant recovery (in 

presence of antioxidant) against particle exposure 

3.4  Discussion

Gene expression is modulated by oxidative stress induced by both physiological signals 

(hormones, cytokines, etc.) and environmental stimuli (physical parameters, xenobiotics, etc.). 

Extensive studies on the induction of stress-response genes by oxidative stress have been 

reported (Morel and Barouki, 1999). So far, we witnessed excessive ROS formation (Chapter 



Chapter 3                        To determine the effect of TiO2 and ZnO nanoparticles on oxidative 
stress response pathaways and its regulation by antioxidants  

96

2) in worms exposed to NPs. Thus, we looked at the expression of genes involved in oxidative 

stress response.  Previous literature signifies that nano-TiO2 and nano-ZnO were identified to 

induce oxidative stress which primarily targets IIS-pathways in C. elegans and leads to up-

regulation of stress response gene expression (Khare et al., 2015; Ratnasekhar et al., 2015). 

Under normal condition, DAF-2 keeps other key modulators DAF-16, HSF-1 and SKN-1 

transcription factors inactivated through phosphorylation and act as a major regulatory protein 

in IIS-pathway. We observed significant down-regulation in the expression of daf-2 gene, 

indicating inhibition of IIS-pathway. DAF-16 is a member of FOXO-transcription factor and is 

known to play a crucial role in stress response. Oxidative stress response genes such as sod, 

ctl, gcs, gst and hsps lie down-stream of DAF-16 and hence is regulated by DAF-16 (Landis 

and Murphy, 2010). In the present study, the up-regulation in the expression of sod-3, ctl-2, 

gcs-1 and gst-4 gene is an indication of nuclear translocation of DAF-16 and SKN-1.  

DAF-16 requires SKN-1 and HSF-1 to regulate the transcription of genes in the nucleus. We 

observed significant up-regulation of SKN-1 and HSF-1 in transgenic GFP worms. SKN-1 in 

C. elegans is ortholog to human Nrf2 and is an important factor in oxidative stress and 

regulates expression of Phase-II detoxification genes (such as gcs, gst etc.) in the worm 

intestine (Landis and Murphy, 2010). Even the nuclear translocation of SKN-1 is mediated by 

IIS through akt-1 phosphorylation. Similarly, HSF-1 is also an important transcriptional factor 

which induces transcription of chaperones and proteases in heat and other stress conditions. 

HSF-1 and DAF-16 act together to promote longevity and small heat-shock protein genes 

(Brunquell et al., 2016). Therefore, exposure to TiO2/ZnO induces stress response through IIS-

pathway, and this study collaborates with gene expression studies under oxidative stress 

(Gonzalez-Moragas et al., 2017; Tian et al., 2016; Khare et al., 2016; Wang et al., 2014). 



Chapter 3                        To determine the effect of TiO2 and ZnO nanoparticles on oxidative 
stress response pathaways and its regulation by antioxidants  

97

Further, JNK-1 is also known to activate DAF-16 under oxidative stress conditions, thus we 

analyzed the expression and activation of JNK-1 and our results suggest that apart from IIS-

signaling pathway even the MAPK pathway is activated. 

  DAF-16 is also activated through immune response during oxidative stress. This requires the 

innate immune response NSY-1-SEK-1-PMK-1 (p38MAPK) pathway (Landis and Murphy, 

2010).  Thus, we tested the role of innate immune response in particle exposed worm against 

particle generated oxidative stress. The up-regulation in the expression of nsy-1, sek-1, and 

pmk-1 genes indicates activation of innate immune response in worms exposed to TiO2/ZnO. 

This p38MAPK also activates SKN-1 by phosphorylation, preventing its degraded by the 

ubiquitin-proteasome system. SKN-1 phosphorylation is mediated by PMK-1, which leads to 

nuclear translocation and induction of stress protective genes (Landis and Murphy, 2010). This 

indicates that both DAF-16 and SNK-1 are activated in worms exposed to TiO2/ZnO particle 

and is regulated by both IIS-pathway as well as the innate immune signaling pathway. 

However, in the presence of ascorbic acid or curcumin during particle treatment, the 

expression of daf-2 and daf-16 genes in exposed worms were comparable to that of the 

control. Thus, the presence of antioxidants curcumin and ascorbic acid reduces oxidative load 

and activates IIS-signaling and controls activation of immune response signaling. This data is 

in line with the reports that presence of antioxidants reduced  oxidative stress and immune 

response in cell lines, C.elegans, mice and rat against NPs such as- NiO2, ZnO, Ag, TiO2  and 

Cd-quantum dots (Srivastava et al., 2016; Yang et al., 2016; Khorsandi et al., 2016; Turkez et 

al., 2016; Fukui et al., 2015; Jin et al., 2015; Nemenqani, 2015; Nemenqani et al., 2015; 

Somayeh and Mohammad 2014; Li et al., 2012; Siddiqui et al., 2012).   
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3.5 Summary

•     Nano/bulk TiO2 and ZnO exposure were found to induce the oxidative stress-mediated 

alteration in IIS and immune signaling in exposed worms.

•     Exposure of nano/bulk particles alters the expression of a xenobiotic gene (gsc-1) and 

antioxidative enzyme gene (sod-3, ctl-2, gst-4) in C. elegans.

•    Immune response (nsy-1, sek-1, pmk-1, and JNK-1) act parallel to IIS-signaling in an 

exposed worm. 

•    Co-exposure of antioxidants (curcumin and ascorbic acid) was efficient to reduce oxidative 

stress thus, maintain the IIS and immune signaling in worms against nano/bulk exposure.
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Table 3.1 Sequence of genes primers employed in the present study

Gene 
name

Function Primer sequence
5’-----3’

daf-2 
(5'->3')

daf-2 encodes a tyrosine kinase receptor, the C. elegans insulin/IGF receptor 
ortholog; DAF-2 activity is required for embryonic and larval development, 
longevity, reproduction, fat storage, chemotaxis learning, and stress 
resistance, including response to high temperature, oxidative stress, and 
bacterial infection

F’ AACTCTCGGTGGAAAGAAGC 
R’ GTCGGTTTCCTTGTTAAGGC 

daf-16 
(5'->3')

daf-16 encodes the sole C. elegans forkhead (FOXO) homologue; DAF-16 
functions as a transcription factor that acts in the insulin/IGF-1-mediated 
signaling (IIS) pathway that regulates dauer formation, longevity, fat 
metabolism, stress response, and innate immunity

F’ GTGGCCAATGCAACAATACA 
R’ TGATGAGGATGCATTGGATGA

gst-4 
(5'->3')

gst-4 encodes a putative glutathione-requiring prostaglandin D synthase F’ TGCAGAGGAAGAAGCTTACG
R’ ATGATCAGCGTCACTTCCAT

gcs-1 
(5'->3')

gcs-1 encodes the C. elegans ortholog of gamma-glutamine cysteine 
synthetase heavy chain; GCS-1 is function, in a conserved xenobiotics stress 
response pathway

F’ AAGTAGCTATCAACGTCCCG 
R’ AGGTTTCGCATCACGAGTAT

sek-1
(5'->3')

sek-1 gene encodes for MAPKK and also required for PMK-1 activation and 
play an important function in a conserved p38 MAPK immune signaling 
pathway

F’ GCAAACACATTCCAGAGCCG
R’ TGTTCGACGGTTTCACGTCT

nsy-1 
(5'->3')

nsy-1 gene encodes a C.elegans MAPKKK that is an activator of JNK and 
p38 MAPKs. NSY-1 required for PMK-1 activation and play an important 
function in a conserved p38 MAPK immune signaling pathway

F’ TCTGTTCCCGACAAAGGCTC
R’ TGCAGCGTACACAGTTCCAT

pmk-1 
(p38) 
(5'->3')

pmk-1 gene encodes a P38 mitogen-activated protein kinase which is identical 
to mammalian p38 and selectively phosphorylated and activated by only one 
of the three MEK family members that recognize mammalian p38s

F’ GGAACTGTTTGTGCTGCTG
R’ TCACGATATGTACGACGGGC

actin-1 
(5'->3')

Actins are highly conserved proteins that are involved in various types of cell 
motility and are ubiquitously expressed in all eukaryotic cells

F’ AGAAGAGCACCCAGTCCTCC 
R’ GAAGCGTAGAGGGAGAGGAC
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4.1  Introduction

In our present study, so far we have noticed curcumin and ascorbic acid protects worms 

against nano-TiO2 and nano-ZnO induced lethality (Chapter 2), diminishes reactive oxygen 

species (ROS) production. Further, we also witnessed over-expression of oxidative stress 

response genes on exposure to a particle was regulated in presence of antioxidants (Chapter 3). 

To functionally validate the gene expression data, we analyzed antioxidant enzyme activity in 

C. elegans exposed to nano-TiO2 and nano-ZnO in presence/absence of antioxidants. Further, 

we also measured the oxidative damage of macromolecules in nanoparticles exposed worms in 

presence/absence of curcumin and ascorbic acid. 

Reactive oxygen species (ROS) such as superoxide anion (O2−), hydrogen peroxide (H2O2), 

hydroxyl radicals (OH•), and singlet oxygen (1O2), are byproducts of aerobic metabolism in 

mitochondria. Mitochondria constantly utilize oxygen in order to support energy needs of the 

tissue thus; it is a major site for a free radical generation. In the normal course, ROS serve as 

signaling molecules to regulate physiological processes including cell proliferation, host 

defense, signal transduction, and gene expression (Schieber and Chandel, 2014; Droge, 2002). 

A cellular balance between ROS generation and clearance by antioxidative defense 

mechanisms is crucial for normal functioning of the cell. On the other hand, high amount of 

ROS production leads to oxidative stress. Since ROS molecules harbor one or more unpaired 

electrons, they are highly reactive and readily damage the macromolecules such as lipids, 

proteins, polysaccharides, and DNA. However, organisms do have endogenous antioxidant 

defense system which includes antioxidant enzymes and molecules to scavenge the free 

radical. The major antioxidant enzymes are superoxide dismutase (SOD), catalase (CTL), 
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glutathione peroxidase (GPx), glutathione reductase and antioxidant molecules are reduced 

glutathione (GSH), alpha-lipoic acid, coenzyme Q etc.

Therefore, the extent of oxidative stress is measured by estimating the level of cellular 

enzymatic and non-enzymatic antioxidants such as SOD, CTL, reduced glutathione (GSH), 

and GPx. Superoxide dismutase catalyzes the breakdown of superoxide anions into oxygen 

and hydrogen peroxides. Catalases or glutathione peroxidases further catalyze hydrogen 

peroxides into water and oxygen. Similarly, reduced glutathione (GSH) is an important water-

soluble antioxidant molecule that donates reducing equivalent such as proton or electron to 

neutralize the free radicals. Glutathione molecule itself becomes reactive after donating an 

electron and react with another reactive glutathione molecule to form glutathione disulfide 

(GSSG) which is further reduced to form reduced glutathione (GSH) and this complete cycle 

is accelerated by two important enzyme glutathione reductase and glutathione peroxidases. 

TiO2 and ZnO nanoparticles are reported to induce oxidative stress by the generation of ROS 

and altered antioxidant enzyme level in different in-vitro and in-vivo system such as cell lines 

(Saliani et al., 2016; Pandurangan and Kim, 2015; Srivastava et al., 2015; Dubey et al., 2015), 

rats/mice (Mansouri et al., 2015; Bheeman et al., 2014; Shrivastava et al., 2014), plants 

(Ebrahimi et al., 2016; Chichiriccò and Poma, 2015; Dolatabadi et al., 2015; Song et al., 

2012), terrestrial arthropod (Porcellio scaber, Isopoda, Crustacea) (Drobne et al., 2009), 

Daphnia magna (Liu et al., 2014), worms (Eisenia fetida, C. elegans) (Khare et al., 2015; 

Lebedev et al., 2015; Hu et al., 2010), fish (Oreochromis mossambicus, Tilapia zillii, Cyprinus 

carpio, Danio Rerio) (Saddick et al., 2015; Liu et al., 2014; Karthigarani and Navaraj, 2012; 

Linhua et al., 2009). 
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Some naturally extracted chemicals, drugs, and antioxidants such as idebenone, carnosine, 

vitamin E, and glycyrrhizic acid are reported to mitigate nano-TiO2 induced alteration in 

antioxidant enzyme level in mice/rat (Ali et al., 2015; Azim et al., 2015; Khorsandi et al., 

2015). Similarly, protective effects of vitamin E, B, C and α-lipoic acid are determined against 

nano-ZnO induced oxidative stress in rat and Nile tilapia (Oreochromis niloticus) (Yousef and 

Mohamed, 2015; Fukui et al., 2015; Nemenqani, 2015; Nemenqani et al., 2015; Somayeh and 

Mohammad, 2014; Alkaladi et al., 2014; Rasheed et al., 2012).  Thus, the main aim of this 

study is to evaluate (i) the disruption of antioxidant enzyme regulation and oxidative damage 

of macromolecules in C. elegans exposed to TiO2 and ZnO particles, (ii) the presence of 

curcumin/ascorbic acid during treatment ameliorates the same by normalizing antioxidant 

enzyme activity and monitoring oxidative damage of macromolecules.

4.2     Material and Methods 

All the assays in this chapter were performed at LC1, LC10 and LC50 concentration for lethal 

particles, whereas for non-lethal bulk particle (bulk-TiO2) same concentration as used for 

nano-TiO2 was applied in presence/absence of antioxidants (curcumin and ascorbic acid), 

along with control. For determining DNA damage and apoptosis the assay was performed at 

LC10 concentration.

4.2.1     ROS assay: Followed the protocol as mentioned in chapter 2, section 2.2.5.

4.2.2    MTT Assay: 

Tetrazolium MTT dye [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] is 

used to assess cellular metabolic activity. MTT is a cell-membrane permeable dye, which 
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is reduced by NAD(P)H-dependent cellular oxidoreductase enzymes to an insoluble 

purple colored formazan product. This formazan product is soluble in organic solvent 

and thus, measured calorimetrically. Synchronized L4 worms (~1000 worms) in 

triplicate were transferred to each well of transparent 96-well microtitre plate along with 

50 µl of MTT (10 mg/ml) dye and incubated at 20°C for 3 h. It was centrifuged at 2000 

rpm for 10 min, and the supernatant was aspirated. Formazan formed in worms was 

solubilized in 100 μl DMSO and measured at 595 nm in Spectrophotometer 

(Spectramax, Molecular Devices, UK) (James et al., 2007).  MTT gives a measure of 

viable cells and is shown in results section as fold change in comparison to control.

4.2.3    Sample preparation for enzymatic assays: 

Samples of control and treated worms were prepared as 10% by weight/volume ratio in 

phosphate buffer (0.1 M, pH 7.4), homogenized and centrifuged at 1,500  g for 10 min 

at 4ºC. The supernatant was employed as 10% homogenate and used for measuring LPO 

and GSH activity. Further, the 10% homogenate was again centrifuged at 12,500  g for 

15 min at 4ºC, the supernatant was collected as post-mitochondrial fraction (PMF- for 

CTL, GPx, AChE estimation) and the pellet was dissolved in phosphate buffer (0.1 M, 

pH 7.4), and this fraction called mitochondrial fraction (MF) was used for the SOD  

estimation.

4.2.4     Protein estimation: 

Protein concentration in tissue homogenates was measured using bovine serum albumin 

(BSA) as the reference standard (Lowry et al., 1951). Lowry’s method employs two 

colour forming reactions (i) Biuret reactions: cupric ions (Cu2+) in presence of a base 
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reacts with a peptide bond of protein under alkaline conditions reducing into cuprous 

ions (Cu+) (ii) Lowry’s reaction:  The blue-purple color is formed due to the reduction of 

Folin Ciocalteu reagent (phosphomolybdo-tungstate to hetero-polymolybdenum blue) by 

the copper catalysed oxidation of aromatic amino acids tryptophan and tyrosine. Finally, 

the blue color is measured at 650-700 nm on the spectrophotometer. The reaction 

consists of 2 ml copper sulphate reagent [98 ml of solution A (2% sodium carbonate in 

50 ml of 0.1 N NaOH solution), 2 ml solution B (1.56% copper sulphate solution in 10 

ml of 2.37% sodium potassium tartrate solution)] and 0.2 ml of Folin - Ciocalteau 

reagent solution (1 N) was added to 0.2 ml of sample, followed by 30 min incubated in 

dark condition. The standard of 1 mg/ml BSA was run in parallel at different 

concentrations (25-200 μg/ml). Optical density was measured at 660 nm. The protein 

concentrations in the C. elegans samples were determined through BSA standard curve 

as mg/ml total protein. 

4.2.5    Superoxide dismutase (SOD) activity EC 1.15.1.1:

The activity of superoxide dismutase was measured in the control and treated worms 

following the method of Kakkar et al., 1984. This assay consists of 1.3 ml sodium 

pyrophosphate buffer (0.082 M, pH 8.3), 100 μl phenazine methosulphate (186 μM), 300 

μl nitro-blue-tetrazolium (300 μM), and 100 μl of MF in phosphate buffer (0.1 M, pH 

7.4). The reaction was initiated by addition of 200 μl NADH (780 μM) followed by 

incubation at 37oC for the 90 s. Glacial acetic acid (1 ml) was added to stop the reaction. 

The reaction mixture was mixed vigorously with 4 ml of n-butanol and the mixture was 

allowed to stand for 10 min followed by centrifugation for 10 min at 3,000  g to 
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separate the butanol layer. The color intensity of the chromogen (purple) in butanol layer 

was measured at 560 nm on the spectrophotometer. A mixture without enzyme 

preparations was run in parallel to serve as the reagent blank. The superoxide dismutase 

activity is expressed in units/min/mg protein. 

4.2.6    Catalase (CTL) activity EC1.11.1.6: 

The activity of catalase in control and treated worms was assayed following the method 

of Aebi, 1984, using H2O2 as substrate. To the reaction mixture, 896 μl phosphate buffer 

(0.1 mM, pH 7.4), 100 μl PMF of sample, and 4 μl H2O2 (30 mM) was added rapidly, 

making its final volume to 1 ml. The decrease in optical density was measured for 150 s 

at 240 nm using the spectrophotometer. The activity of the enzyme was calculated using 

the molar extinction coefficient 43.6 M cm-1 and expressed as catalase activity/min/mg 

protein.

4.2.7    Reduced glutathione (GSH) assay:

Levels of reduced glutathione (GSH) in C. elegans were measured following the method 

of Hasan and Haider, 1989. 500 μl of 10% homogenate was deproteinized with an equal 

volume (500 μl) of 10% TCA and allowed to stand at 4oC for 1 h. The contents were 

centrifuged at 3000  g for 15 min. The supernatant (0.5 ml) was added to 2 ml of Tris-

HCl buffer (0.4 M, pH 8.9) containing EDTA (0.02 M, pH 8.9) followed by the addition 

of 100 μl 5,5'dithionitrobenzoic acid (DTNB, 0.01 M). The volume was made up to 3 ml 

by addition of 0.5 ml of DW and absorbance of yellow color was read on a 

spectrophotometer at 412 nm. The standard of GSH was run in parallel at different 

concentrations (5-100 μg/ml) and the results are expressed as μg GSH/g tissue. 
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4.2.8    Glutathione peroxidase (GPx) activity EC 1.11.1.7: 

The activity of glutathione peroxidase in C. elegans was measured by the procedure of 

Flohe and Gunzler, 1984. The PMF of exposed worms was used for the estimation of 

glutathione peroxidase activity. Reaction mixture in a final volume of 1 ml containing 

300 μl phosphate buffer (0.1 M, pH 7.4), 200 μl reduced glutathione (2 mM), 100 μl 

sodium azide (10 mM), 200 μl hydrogen peroxide (H2O2, 1 mM) and 300 μl C. elegans 

homogenate (PMF) was incubated at 37ºC for 15 min. The reaction was stopped by 

addition of 0.5 ml TCA (10%). The tubes were centrifuged at 2000  g for 5 min to settle 

the protein. Following this, the 100 μl of supernatant was added into another tube 

containing 0.2 ml of phosphate buffer (0.1 M, pH 7.4) and 0.7 ml of the DTNB (0.4 

mg/ml). The reaction mixture was vortexed and absorbance was recorded at 420 nm. The 

values are expressed as nmol GSH oxidized/min/mg protein. 

4.2.9.    Protein carbonyl assay:

Protein carbonyl levels in C. elegans was measured following the method of Levine et 

al., 1990 using 2,4-dinitrophenylhydrazine (DNPH) as a substrate. To 200 μl of PMF, 

800 μl of 10 mM DNPH dissolved in 2 M HCl was added. Following this, samples were 

incubated for 1 h at RT in the dark with continuous stirring and then precipitated with 1 

ml of 20% trichloroacetic acid (TCA). The tubes were kept for 10 min on ice and 

samples were centrifuged at 3,000  g for 15 min at RT. The supernatant was discarded 

and protein pellet was washed in 10% TCA once and thrice in ethanol: ethyl acetate (1:1) 

to remove free DNPH and additional lipid contaminants. The protein precipitate was 

then dissolved in 1 ml 6 M guanidine hydrochloride solution. Finally, the absorbance 



Chapter 4                            To evaluate the oxidative damage and antioxidant enzyme 
regulation in C. elegans exposed to TiO2 and ZnO nanoparticles in the presence/absence of 
antioxidants

108

was determined using spectrophotometer at 375 nm and the amount of carbonyl content 

was calculated using a molar extinction coefficient (ε) of 22.0 mM−1cm−1 for aliphatic 

hydrazones. 

4.2.10    Lipid peroxidation (LPO) assay:

As a measure of lipid peroxidation, thiobarbituric acid reactive substance (TBARS) was 

measured in C. elegans following the method of Ohkawa et al., 1979. The control and 

treated worms were homogenized individually in phosphate buffer (0.1 M, pH 7.4). To 

50 μl 10% C. elegans homogenate, 1650 μl DW was added. The homogenate was 

incubated with 100 μl of 10% sodium dodecyl sulfate for 10 min followed by the 

addition of 20% acetic acid (600 μl). The reaction mixture was incubated with 600 μl 

0.8% thiobarbituric acid for 2 h in boiling water bath, then cooled and centrifuged at 500 

rpm for 5 min. The supernatant was transferred to new tubes. The intensity of pink 

chromogen formed was read at 532 nm. The amount of TBARS during the reaction was 

calculated using a molar extinction coefficient of 1.56 x 105 M-1cm-1. 

4.2.11     Estimation of 8-OHDG:

8-hydroxy-2'-deoxyguanosine (8-OHdG) biomarker was used to determine DNA damage 

(Yang et al., 2013). L4 staged worms were subjected to LC10 of nano/bulk TiO2 and ZnO 

for 24 h. After treatment, worms were washed with M9 buffer harvested and 

homogenized in TE buffer followed by centrifugation at 12000 rpm for 15 min at 4°C. 

DNA was extracted by phenol-chloroform extraction method and subjected to liquid 

chromatography to determine 8-OHdG and dG levels. 
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DNA extraction:

Control and treated worms were harvested, washed thrice with sterile water and twice 

with TEN buffer (40 mM Tris-HCl, pH 7.5 - 8.0, 1 mM EDTA and 150 mM NaCl) to 

remove bacterial and other contamination. Worms were resuspended in TEN (0.75 ml) 

and transferred in eppendorfs. The washed worms were freezed for 2 h at 20 ºC followed 

by thawing at 37 ºC, twice. 40 µl of 10% SDS and 8 µl of 10 mg/ml proteinase K were 

added by gentle mixing followed by the incubation at 55ºC for 1 h. To this, 8 µl of 10 

mg/ml proteinase K mix gently and incubate at 55 ºC for 1 h with occasional flicking. An 

equal volume of phenol was added, and samples were mixed for 5 min by flipping 

followed by the centrifuged at 14000 rpm for 10 min at 4ºC. The aqueous phase (upper 

layer) was taken in fresh eppendorf tubes and an equal volume of 

phenol:chloroform:isoamyl alcohol (25:24:1) was added. Mixed for 5 min and 

centrifuged at 14000 rpm for 5 min at 4ºC, The aqueous phase was transferred in a fresh 

tube and an equal volume of chloroform:isoamyl alcohol (24:1) was added. Mixed by 

shaking for 3 min and was centrifuged at 14000 rpm for 5 min at 4ºC. The aqueous phase 

was transferred in to a fresh tube and 1/10 volume of 3 M sodium acetate (pH 5.2) and 3 

volume of absolute ethanol was added at RT and was mixed by inverting the tube few 

times. DNA precipitated instantly and a filament was formed, centrifuged at 14000 rpm 

for 5 min at 4ºC. The DNA pellet was washed with chilled 70% ethanol twice and the 

ethanol was decanted, dried briefly. DNA pellet was resuspended in TE buffer and 

quantified by Nanodrop (Thermo scientific, U.S.A). 
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(i)    Sample preparation: 

200 µg of DNA was digested to the nucleotide by adding 20 units of nuclease P1 and 

incubating at 37°C for 2 h. Subsequently, phosphate groups were removed by addition of 

6 units of alkaline phosphatase and incubation at 37°C for 2 h. Just prior to UPLC 

analysis, the samples were filtered with Microcon YM-10 (EMD Millipore, Billerica, 

MA, USA) in order to remove remaining proteins or other contamination. 

(ii)     Ultra-High Performance Liquid Chromatography (UHPLC):

 The samples were subjected to UPLC system (Shimadzu Corporation, Kyoto, Japan.) 

using enable amino column (4.6X250 mm) with the elution rate 1 ml/min and 

acetonitrile with 10 mM ammonium acetate as mobile phase. The amount of 8-OHdG 

and dG were detected with PDA (Photodiode array) detector at 254 nm wavelength in 

exposed worm samples along with standards for 8-OHdG (Sigma Aldrich) and dG 

(Sigma Aldrich). 

(iii) Determination of 8-OHdG: 

To determine the concentration of 2-dG and 8-OHdG standard graphs were plotted and 

the level of 8-OHdG was represented as nmol of 8-OHdG per nmol of 2dG.

4.2.12 Apoptosis:

Germ line apoptosis was determined by employing the transgenic strain ZH814. ZH814 

has CED-1::GFP and 2_FYVE::mRFP; the fluorescent markers that label the surface of 

phagocytic cups and maturing phagosomes, respectively (Lu et al., 2009). CED-1, a 

transmembrane protein is expressed as a marker on the surface of engulfing (phagocytic) 

cell. Thus, CED-1::GFP specifically label cell corpses that are in the process of being 
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engulfed. Further, 2xFYVE::mRFP act as a marker for cell corpses that remains on the 

phagosomal surface until the complete degradation occurs. ZH814 worms were 

subjected to LC10 of nano/bulk TiO2 and ZnO for 24 h. After treatment, worms were 

washed and mounted on 2% agar pads on a clean slide. Fluorescence imaging was 

carried to determine GFP (FITC filter excitation 480/20 nm, emission 535/20 nm) and/or 

RFP (Rhodamine filter excitation 560/20 nm emission 630/30 nm) expressed in the germ 

line cells undergoing apoptosis. Number of CED-1::GFP and 2xFYVE:: mRFP marked 

cell corpses were scored in ~30 worms for each treatment under the fluoresces 

microscope. The results represent the number of phagosomes (GFP) and engulfed cell 

corpses (RFP). 

5.2.13  Statistical analysis: 

Results are expressed as mean±SEM, graphically. Significance analyzed using one-way 

analysis of variance (ANOVA) followed by Bonferroni correction. 

4.3    Results

4.3.1a Effect of TiO2/ZnO NPs on ROS generation of an organism in comparison to 

bulk:

Compared to control, concentration dependent and significant (p<0.001) ROS 

production with 2.8-/4.4-/6.8-, 2.1-/3.4-/4.9- fold increase, was observed in worms 

exposed to LC1/LC10/LC50 of nano-TiO2, bulk-TiO2, respectively. Further, level of ROS 

in worms exposed to nano was significant (p<0.05) in comparison to that of bulk (Figure 

4.1). 
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Similarly, 3.2-/4.8-/7.3- and 2.3-/3.8-/5.4- fold increase in ROS was noticed in worms 

exposed to LC1/LC10/LC50 of nano-ZnO and bulk-ZnO, respectively. Nano exposed 

worms were found to have significant increment (p<0.01) in the ROS generation 

compare to bulk (Figure 4.1). 

4.3.1b Amelioration from nano/bulk induced ROS generation:

In presence of the antioxidants (ascorbic acid or curcumin), ROS production was found 

to be equivalent to that of control at LC1 and LC10 concentrations of nano/bulk particles 

(Figure 4.1), while the recovery was not comparable to control at LC50 concentration.

Figure 4.1 Amelioration effects of ascorbic acid and curcumin on nano-TiO2, bulk-

TiO2, nano-ZnO and bulk-ZnO induced change in the level of reactive oxygen species 

in exposed C. elegans. C = control; RC = reference control; bar = mean±SEM of three 

independent experiments; Bonferroni corrected *p<0.001, %p<0.01 = Significant 

against control; @p<0.001, $p<0.05   = Significant recovery (in presence of antioxidant) 

against particle exposure
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4.3.2a Effect of TiO2/ZnO NPs on mitochondrial activity of organism in comparison 

to bulk:

Mitochondrial activity reduces significantly (p>0.001) in concentration dependent 

manner in particle exposed organisms compared to controls. We observed 13%, 31%, 

41% reduction in mitochondrial activity of the organism exposed to for nano-TiO2 and 

7%, 17%, 33% reduction in organism exposed to bulk-TiO2 at LC1, LC10, LC50 

concentrations, respectively. A significant decrease (p<0.01) in the mitochondrial 

activity was found in nano-TiO2 exposed worms at LC10 and LC50 concentrations, 

compared to bulk particles (Figure 4.2). 

Similar results were observed in nano ZnO and bulk ZnO exposed organisms where 

27%, 44%, 63% and 15%, 36%, 57% reduction in mitochondrial activity was noticed at 

LC1, LC10 and LC50 concentrations, respectively, in comparison to control. The decrease 

in mitochondrial activity of worms exposed to nano was significant (p<0.01) in 

comparison to that of bulk (Figure 4.2).

4.3.2b Amelioration from nano/bulk induced mitochondrial damage:

In the presence of antioxidants during particle treatment, the mitochondrial activity did 

not differ significantly from control in worms exposed to LC1 and LC10 concentrations of 

nano/bulk particles as well as LC50 of the bulk-TiO2 particle. In worms exposed to LC50 

of nano-TiO2 and nano-ZnO in presence of antioxidants, a significant (p<0.001) 

reduction in mitochondrial activity with 10% and 32% respectively was noticed, while a 

reduction of mitochondrial activity by 13% was noticed even in case of bulk-ZnO, in 
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presence of curcumin (Figure 4.2). Thus, overall 30% mitochondrial activity was 

recovered in presence of antioxidants at highest treatment concentration.

Figure 4.2 Amelioration effects of ascorbic acid and curcumin on nano-TiO2, bulk-TiO2, 

nano-ZnO and bulk-ZnO induced mitochondrial dysfunction in C. elegans. C = control; 

RC = reference control; bar = mean±SEM of three independent experiments; Bonferroni 

corrected *p<0.001 = Significant against control; @p<0.001, #p<0.01, $p<0.05 = Significant 

recovery (in presence of antioxidant) against particle exposure

4.3.3a Effect of TiO2/ZnO NPs on superoxide dismutase (SOD) activity of organism 

in comparison to bulk:

The SOD activity was found to increase in concentration dependent manner on exposure 

of worms to nano/bulk particles. The increase in SOD activity in worms on exposure to 

LC1, LC10 and  LC50 concentrations was 1.15-, 1.4-, 1.7- fold for nano-TiO2 exposure, 

1.1-, 1.2-, 1.35- fold for bulk-TiO2 exposure, 1.2-, 1.6-, 1.95- fold for nano-ZnO 

exposure and 1.1-, 1.2-, 1.6- fold for bulk-ZnO exposure, respectively, in comparison to 
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control worms (1-fold). Significant (p<0.001) increase in SOD activity was noticed in 

worms exposed to LC10 and LC50 concentrations of nano TiO2/ZnO and bulk-ZnO 

particles, and only in worms exposed to LC50 concentrations of bulk-TiO2 particles 

(Figure 4.3).

4.3.3b Amelioration effect of antioxidant on superoxide dismutase (SOD) activity:

In the presence of antioxidants during particle treatment, SOD activity in nano/bulk 

particles exposed worms was equivalent to that of control, except in worms exposed to 

LC50 of nano particles. Even at the LC50 concentration, 50% recovery was noticed in 

presence of antioxidants with the SOD activity of 1.35- fold for nano-TiO2 and 1.5- fold 

for nano-ZnO particle (Figure 4.3). Thus, antioxidants attenuated SOD activity imposed 

by lower concentrations of nano/bulk particles and up to 50% (of SOD activity) even at 

highest treatment concentration (LC50) of nanoparticles tested.
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Figure 4.3 Amelioration effects of ascorbic acid and curcumin on nano-TiO2, bulk-TiO2, 

nano-ZnO and bulk-ZnO induced change in the level of super oxide dismutase enzyme in 

exposed C. elegans. C = control; RC = reference control; bar = mean±SEM of three 

independent experiments; Bonferroni corrected *p<0.001 = Significant against control; 
@p<0.001 = Significant recovery (in presence of antioxidant) against particle exposure 

4.3.4a Effect of TiO2/ZnO NPs on catalase (CTL) activity of organism in 

comparison to bulk:

A significant (p<0.01) and concentration dependent increase in CTL activity was 

observed in worms exposed to LC10 and LC50 of nano-TiO2 (1.39-, 1.75- fold); LC50 of 

bulk-TiO2 (1.46- fold); LC1, LC10 and LC50 of nano-ZnO (1.6-, 1.75-, 2.1- fold) and for 

LC10 and LC50 of bulk-ZnO (1.4-, 1.6- fold) in comparison to control (1- fold) worms 

(Figure 4.4). 

4.3.4b Amelioration effect of antioxidant on catalase (CTL) activity:

Significant reduction in CTL activity was noticed in the presence of antioxidants during 

nano/bulk treatment in comparison to the absence of antioxidants during treatment. In 
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the presence of antioxidants, CTL activity was restored to that of control, except in 

worms exposed to LC50 of nano-TiO2 and nano-ZnO, where it was found to be 

significant (p<0.001) with 1.26- fold and 1.7- fold increase, respectively (Figure 4.4). 

Thus, antioxidants attenuated CTL activity imposed by lower concentrations of 

nano/bulk particles and at LC50 of nano-TiO2 and nano-ZnO, attenuation was 60% and 

35% (of CTL activity), respectively.

Figure 4.4 Amelioration effects of ascorbic acid and curcumin on nano-TiO2, bulk-TiO2, 

nano-ZnO and bulk-ZnO induced change in the level of catalase enzyme in exposed C. 

elegans. C = control; RC = reference control; bar = mean±SEM of three independent 

experiments; Bonferroni corrected *p<0.001 = Significant against control; @p<0.001 = 

Significant recovery (in presence of antioxidant) against particle exposure
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4.3.5a Effect of TiO2/ZnO NPs on reduced glutathione (GSH) activity of organism 

in comparison to bulk:

Glutathione in reduced form (GSH) is a measure of cells free-radical scavenging 

capacity. GSH level was found to reduce significantly (p<0.01) in concentration 

dependent manner with 15%, 24%, 42%; 12%, 22.5%, 36.6%; 19.3%, 43%, 55.3% and 

13%, 30%, 43% reduction in organism exposed to LC1, LC10, LC50 concentrations of 

nano-TiO2, bulk-TiO2, nano-ZnO and bulk-ZnO respectively, in comparison to control. 

The decrease in GSH levels of worms exposed to nano was non-significant in 

comparison to that of bulk (Figure 4.5).

4.3.5b Amelioration effect of antioxidant on reduced glutathione (GSH) activity:

In the presence of antioxidants during particle treatment, the GSH levels did not differ 

significantly from control, in the worms exposed to LC1 and LC10 of nano/bulk particle. 

In worms exposed to LC50 of nano/bulk particles in presence of antioxidants, a 

significant (p<0.001) reduction in GSH level was noticed (Figure 4.5). The recovery in 

GSH levels in presence of ascorbic acid/curcumin antioxidants, against nano-TiO2 is 

24%/32%; for bulk-TiO2 it is 45%/62%; for nano-ZnO it is 50%/42%, while for bulk-

ZnO it is 78%/69%, respectively. 
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Figure 4.5 Amelioration effects of ascorbic acid and curcumin on nano-TiO2, bulk-TiO2, 

nano-ZnO and bulk-ZnO induced change in reduced glutathione level in exposed C. 

elegans. C = control; RC = reference control; bar = mean±SEM of three independent 

experiments; Bonferroni corrected *p<0.001, %p<0.01 = Significant against control; 
@p<0.001, #p<0.01 = Significant recovery (in presence of antioxidant) against particle 

exposure 

4.3.6a Effect of TiO2/ZnO NPs on glutathione peroxidase (GPx) activity of organism 

in comparison to bulk: 

Glutathione peroxidase activity was found to reduce in concentration dependent manner 

with 10%, 15.6%, 21.4%; 3%, 8.5%, 16.8%; 7.75%, 18.7%, 33% and 5.4%, 10%, 20% 

reduction in organism exposed to LC1, LC10, LC50 concentrations of nano-TiO2, bulk- 

TiO2, nano-ZnO and bulk-ZnO respectively, in comparison to control (Figure 4.6). 

Significant (p<0.01) decrease in GPx activity was noticed in worms exposed to LC10 and 

LC50 concentrations of NPs and only at the LC50 concentration of bulk particles (Figure 

4.6).
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4.3.6b Amelioration effect of antioxidant on glutathione peroxidase (GPx) activity:

In the presence of antioxidants during particle treatment, the GPx activity did not differ 

significantly from control, except for LC50 of nano-ZnO where a significant (p<0.001) 

reduction of 23% and 18% GPx activity was noticed in presence of ascorbic acid and 

curcumin respectively, during treatment (Figure 4.6).  The recovery in GPx activity by 

30% and 46% was witnessed in presence of ascorbic acid and curcumin, respectively, 

against LC50 of nano-ZnO exposure.

Figure 4.6 Amelioration effects of ascorbic acid and curcumin on nano-TiO2, bulk-TiO2, 

nano-ZnO and bulk-ZnO induced change in the level of glutathione peroxidase in 

exposed C. elegans. C = control; RC = reference control; bar = mean±SEM of three 

independent experiments; Bonferroni corrected *p<0.001 = Significant against control; 
@p<0.001, #p<0.01 = Significant recovery (in presence of antioxidant) against particle 

exposure 
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4.3.7a Effect of TiO2/ZnO NPs on lipid peroxidation (LPO) of the organism in 

comparison to bulk:

A significant (p<0.001) and concentrations dependent increase in MDA content with 

2.25-, 4.2- and 7.2- fold for nano-TiO2, 1.5-, 2.07- and 2.5- fold for bulk-TiO2, 2.95-, 

4.9- and 9.0- fold nano-ZnO and 2.4-, 2.6- and 3.5- fold for bulk-ZnO exposed worms at 

LC1, LC10 and LC50 respectively, in comparison to control (1- fold) was obtained (Figure 

4.7).

4.3.7b Amelioration effect of antioxidant on lipid peroxidation (LPO):

Significant (p<0.001) reduction in MDA content was noticed in the presence of 

antioxidants during nano/bulk treatment in comparison to the absence of antioxidants 

during treatment. In the presence of antioxidant (ascorbic acid or curcumin) during 

treatment, the MDA content was equivalent to that in control among the exposed worms 

at the low exposure concentrations (LC1 and LC10) of nano/bulk particles as well as at 

LC50 of bulk-TiO2. At LC50 concentration of nano TiO2/ZnO 84% recovery in presence 

of antioxidants was noticed, whereas at LC50 of bulk-ZnO the recovery was 70% and 

75% in presence of ascorbic acid and curcumin respectively (Figure 4.7).
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Figure 4.7 Amelioration effects of ascorbic acid and curcumin on nano-TiO2, bulk-TiO2, 

nano-ZnO and bulk-ZnO induced change in the level of malondialdehyde in exposed C. 

elegans. C = control; RC = reference control; bar = mean±SEM of three independent 

experiments; Bonferroni corrected *p<0.001, %p<0.01 = Significant against control; 
@p<0.001 = Significant recovery (in presence of antioxidant) against particle exposure

4.3.8a Effect of TiO2/ZnO NPs on protein carbonylation of the organism in 

comparison to bulk:

Protein carbonylation was found to increase in concentration dependent manner on 

exposure of worms to nano/bulk particles. The increase in protein carbonylation in 

worms on exposure to LC1, LC10, LC50 concentrations was 1.1-, 1.66-, 2.87- fold for 

nano-TiO2 exposure, 1.06-, 1.1-, 1.5- fold for bulk-TiO2 exposure, 1.2-, 2.02-, 4.1- fold 

for nano-ZnO exposure and 1.2-, 1.43-, 1.9- fold for bulk-ZnO exposure, respectively, in 

comparison to (1- fold) control worms (Figure 4.8).  
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Significant (p<0.01) increase in protein carbonylation was noticed in worms exposed to 

LC10 and LC50 concentrations of nanoparticles as well as LC50 of bulk particles (Figure 

4.8).

4.3.8b Amelioration effect of antioxidant on protein carbonylation:

In presence of antioxidants, protein carbonylation was restored to that of control, except 

in worms exposed to LC50 of nano-TiO2 and nano-ZnO, where it was found to be 

significant (p<0.001) with 1.9- and 2.28- fold in presence of ascorbic acid and 1.74 and 

1.8- fold increase in presence of curcumin, respectively (Figure 4.8). Thus, antioxidants 

attenuated protein carbonylation imposed by lower concentrations of nano/bulk particles 

and even at highest treatment concentration (LC50), 51-60% of nano-TiO2 and 58-74% of 

nano-ZnO induced protein damage (Figure 4.8).

Figure 4.8 Amelioration effects of ascorbic acid and curcumin on nano-TiO2, bulk-TiO2, 

nano-ZnO and bulk-ZnO induced change in the level of carbonyl in exposed C. elegans. 

C = control; RC = reference control; bar = mean±SEM of three independent 
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experiments; Bonferroni corrected *p<0.001, %p<0.01 = Significant against control; 
@p<0.001   = Significant recovery (in presence of antioxidant) against particle exposure 

4.3.9a Effect of TiO2/ZnO NPs on DNA of the organism in comparison to bulk:

The effect of NPs on DNA damage was assessed by measuring the level of oxidized 

DNA in C. elegans. Compared to control, the level of oxidized guanine base was 

significantly high in nano/bulk exposed worm at LC10 concentration. Further, DNA 

oxidation was found significantly high (p<0.05) in nano-TiO2 and nano-ZnO exposed 

worm in comparison to the worms exposed to their respective bulk particles (Figure 4.9). 

4.3.9b Amelioration from nano/bulk induced DNA damage:

The presence of curcumin or ascorbic acid protects worms from nano/bulk particles 

induced DNA oxidation. Further, no significant alteration was observed in the treated 

worms in the presence of antioxidants compared to control (Figure 4.9). 
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Figure 4.9 Amelioration effects of ascorbic acid and curcumin on nano-TiO2, 

bulk-TiO2, nano-ZnO and bulk-ZnO induced change in DNA damage in exposed 

C. elegans. C = control; RC = reference control; bar = mean±SEM of three 

independent experiments; Bonferroni corrected %p<0.05, *p<0.01, = Significant 

against control; @p<0.001 = Significant recovery (in presence of antioxidant) 

against particle exposure 

4.3.10a Effect of TiO2/ZnO NPs on germ line apoptosis of organism in comparison 

to bulk:

In ZH814 an apoptotic marker strain, the expression of CED-1::GFP; 2_FYVE::mRFP in 

the germ-line of exposed worms were significantly higher compared to controls (Figure 

4.10). Further, the significant change was observed in nano-exposed (p<0.05) worms in 

comparison to worms exposed to bulk particles.

4.3.10b Amelioration from nano/bulk induced germ line apoptosis:

In the presence of antioxidants (ascorbic acid or curcumin) during the treatment, non-

significant apoptosis (number of cell corpses and phagosomes) was observed in the 

germ-line of ZH814 in comparison to control worms (Figure 4.10).  
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Figure 4.10 Amelioration effects of ascorbic acid and curcumin on nano-TiO2, bulk-TiO2, 

nano-ZnO and bulk-ZnO induced apoptosis in germ line of C. elegans. C = control; RC = 

reference control; n=30, bar = mean±SEM of three independent experiments; Bonferroni 

corrected *p<0.001, %p<0.01 = Significant against control; @p<0.001 = Significant 

recovery (in presence of antioxidant) against particle exposure 
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4.4    Discussion

Free radicals are highly reactive molecules with unpaired electrons in the outer shell. Free 

radicals convert other stable molecules into reactive species by gaining electrons from them, 

thus, triggering a chain reaction. Generation of ROS is omnipresent in living organism and cell 

has their own antioxidant networks to quench ROS therefore, there is a balance between the 

production and scavenging of ROS. Increased level of ROS is regulated by antioxidant 

defense system (antioxidative enzyme and molecules) of the organism. Antioxidants are the 

molecules which donate its electron and neutralize free radical. Classic antioxidant enzyme 

(SOD, CTL, GPx) and molecules (reduced GSH) level are considered as an important marker 

to study default in the antioxidant defense system of an organism. The significant increase in 

SOD and CTL activity was observed in nano/bulk exposed organism (supported by our GFP-

transgenic results in Chapter 3). Exposure to nano/bulk increases the free radical load which in 

turn leads to activation of signal transduction pathways for transcription of redox-sensitive 

genes such as SOD, CTL, and GPx. This is in correlation  with earlier studies where increased 

SOD and CTL activity has been reported on exposure to nano-TiO2 or nano-ZnO in  WAG-

cell lines, aquatic model carp (Cyprinus carpio), earthworm Eisenia fetida and Wister rats, 

(Dubey et al., 2015; Hao et al., 2012; Li et al., 2012; Hu et al., 2010). Glutathione is one of the 

most abundant and important cellular tri-peptide antioxidants and GPx enzyme catalyzes a 

reaction between reduced monomeric glutathione and peroxides as a protective mechanism 

against oxidative damage (Birben et al., 2012; Lushchak, 2012). A dose-dependent decrement 

was observed in GSH/GPx level in an exposed worm. This is in correlation with in-vivo 

studies in rats on exposure to indium titanium oxide nanoparticles (InTiONPs), (Bheeman et 
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al., 2014) as well as nano-ZnO (Mansouri et al., 2015) significant decrease in GSH/GPx 

enzymes activity was reported. Similarly, in Daphnia magna and zebra fish embryos the 

reduced level of GSH in 21 day chronic exposure to TiO2, ZnO, CuO and Au nanoparticles 

have been reported (Liu et al., 2014). Thus, the present study revealed that both the nano and 

bulk form of TiO2 or ZnO even at sub-lethal concentrations (LC1 and LC10) induced high 

oxidative stress, as identified by the elevated level of ROS, and significant change in 

antioxidant enzyme levels. 

However, under stress circumstances, the balance is shifted towards the formation of free 

radicals and high level of ROS can oxidize biomolecules such as lipids, protein, and DNA 

which, ultimately participate in the regulation of cell death. Reactions between free radicals 

and lipid or protein end up with the generation of reactive aldehydes [malondialdehyde 

(MDA) and 4-hydroxynonenal (HNE)] and/or ketones respectively. Similarly, high level of 

ROS leads to oxidation of DNA bases and may break DNA strand. Guanine is the most 

susceptible DNA base due to its low oxidation potential during the oxidation reaction. It has 

multiple oxidation products and the two most common modifications are 8-hydroxy-2'-

deoxyguanosine (8-OHdG) and 2, 6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua). 

8-OHdG is one of the most predominant, stable, and well studied forms of free radical-induced 

oxidative lesions. 8-OHDG along with MDA and carbonyl content are used as an important 

index of the stressed condition. Many toxicity studies claimed that nano from of particle 

including nano- TiO2/ZnO stimulates higher ROS production and oxidative stress than their 

bulk counterparts (Khare et al., 2015; Ratnasekhar et al., 2015; Xiong et al., 2011). In the 

present study, MDA, protein carbonyl content, as well as 8-OHdG, were found to be 
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significantly high in nano/bulk TiO2/ZnO exposed worms. Therefore, results indicate that 

exposure to nano/bulk induces high ROS generation and oxidative damage of lipid, protein, 

and DNA. Similar results were reported wherein exposure of nano/bulk TiO2/ZnO to WAG 

cells, eukaryotic cells and mice induce macromolecules damage which causes oxidative stress 

and initiates inflammatory responses (Bucchianico et al., 2017; Hong and Zhang, 2016; Saliani 

et al., 2016; Dubey et al., 2015). NPs induce oxidative damage of macromolecular can initiate 

programmed cell death in the organism (Saliani et al., 2016; Khanna et al., 2015). In the 

present study, we witnessed significant effect on cell viability (MTT assay) and germ cell 

apoptosis in worms exposed to nano/bulk TiO2/ZnO. This data is consistent with the results 

obtained from in-vitro and in-vivo acute toxicity of nano-TiO2 and nano-ZnO on WAG cell 

line (Dubey et al., 2015), human fetal lung fibroblasts (Zhang et al., 2011), primary mouse 

embryo fibroblast cells (Yang et al., 2009), C. elegans (Khare et al., 2015), mice (Mohamed 

and Hussien, 2016), rat (Meena et al., 2015). These findings indicate that exposure to nano and 

bulk form of TiO2 or ZnO even at sub-lethal concentrations (LC10) induced high oxidative 

stress, as identified by the elevated level of ROS, macromolecule damage, apoptosis and 

significant change in antioxidant enzyme levels. 

Co-exposure with curcumin has been reported to protect against mercury, iron and arsenic 

trioxide-induced changes in SOD, CTL, reduced GSH-level and GPx activity in rat and mice 

(Badria et al., 2015; Mathews et al., 2012; Agarwal et al., 2010). Curcumin was also found to 

be protective against nano-nickel oxides particles induced lipid peroxidation and reduced GSH 

level in human airway epithelial (HEp-2) and human breast cancer (MCF-7) cells (Siddiqui et 

al., 2012). Co-exposure with ascorbic acid has been reported to protect against cadmium-
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induced changes in biochemical parameters such as alanine aminotransferase, creatine 

phosphokinase and catalase activity in Cyprinus carpio (Banaee et al., 2015). Ascorbic acid 

has also been reported to help in maintaining the normal level of SOD, CTL and GSH in nano-

ZnO (300 mg/kg and 1 g/kg body weight) or CdCl2 (5 mg/kg body weight) exposed rats 

(Nemenqani et al., 2015; El-Sokkary et al., 2011). The presence of antioxidants ascorbic acid 

and curcumin provide protection against particle (TiO2/ZnO) induced oxidative stress. This is 

in correlation with the protection provided by antioxidants against heavy metal toxicity.  

In the present study, the presence of ascorbic acid and curcumin during the treatment not only 

reduces free radical generation (Chapter 2), it also provides significant protection to 

macromolecules from oxidative damage followed by apoptosis, induced by the exposure of 

nano/bulk particles in C. elegans. Our studies correlates with the finding that ascorbic acid and 

curcumin protects rats and miceagainst cadmium, mercury, iron, arsenic trioxide and nano-

ZnO induced oxidative damage to lipid, protein and DNA in rat and mice (Badria et al., 2015; 

Nemenqani et al., 2015; Parveen et al., 2014; Mathews et al., 2012; El-Sokkary et al., 2011; 

Agarwal et al., 2010). Further, curcumin is also shown to be protective against nano-nickel 

oxide particles induced cell death in human airway epithelial (HEp-2) and human breast 

cancer (MCF-7) cells (Siddiqui et al., 2012). Ascorbic acid has shown protective effect against 

PM2.5 induced human bronchial epithelial cells (16HBE) cell damage (Jin et al., 2015). 

Similarly, in the present study, we have shown antioxidants provide protection against 

TiO2/ZnO (nano/bulk) induced macromolecular damage as well as oxidative enzyme activity 

in C. elegans.
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Overall, nano/bulk TiO2/ZnO exposure induces oxidative damage of macromolecules such as 

protein, lipids, and DNA, even though cell tries to counteract the same by increasing its 

antioxidant enzyme capacity. However, in presence of ascorbic acid and curcumin, protection 

is noticed against TiO2/ZnO particle induced ROS and oxidative damage, which is reflected in 

the normal activity of antioxidant enzymes in C. elegans.

4.5    Summary

•    Exposure to nano and bulk particles activates anti-oxidative stress response enzymes such 

as superoxide dismutase and catalases in exposed worms.

•    Exposure to nano/bulk TiO2/ZnO leads to a reduction in the glutathione and glutathione 

peroxide enzyme activity in C. elegans. 

•    Exposure to nano/bulk TiO2/ZnO leads to lipid peroxidation, protein carbonylation, DNA 

damage and apoptosis in the exposed worm.

•    Exposure to particle at sub-lethal concentrations (LC1 and LC10) in the presence of 

antioxidants efficiently protects the organisms from nano/bulk particles induced oxidative 

damage. 

•    At LC50 concentrations of nano/bulk particles presence of antioxidants provide 50-80% 

recovery against the particles induced oxidative stress and other consequences in worms.

•    Thus, the presence of antioxidants during particle treatment normalizes enzymatic activity 

in exposed worms and also mitigates the macromolecular damage. 
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Objective 2

Chapter 5

III.Functional validation of the protective 

role of antioxidants against the adverse 

effects of TiO2 and ZnO nanoparticles
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5.1    Introduction

Organism’s response to environmental variation is crucial to understand the impact of 

environment on the well-being of living entities. Organism’s condition is quantified by 

assessing the physiological responses such as its performance, the efficiency with which it 

functions under conditions of environmental stress and pollution. For that, Caenorhabditis 

elegans can provide a compelling platform because it has a stereotypic pattern for 

development along with a large repertoire of scorable phenotypes (Hunt, 2017; O’Reilly et al., 

2014). In the previous chapters, we observed high ROS generation (Chapter 2) and oxidative 

stress (Chapter 4) in worms as a consequence of exposure to nano/bulk TiO2 and ZnO. ROS 

generation can modulate the redox environment inside the organism which can affect the 

feeding behaviors and neuronal activity of the organism, also interacts with major sperm 

protein thus cumulatively may have an effect on the reproduction, growth, and behavior of the 

organism. Along with this, ROS also works as signaling molecules and regulate the major 

signaling pathways (immune pathway, insulin signaling pathway, aging, apoptosis, etc) when 

it interacts with transcriptional factors. In chapter 3, we have reported that exposure of 

nano/bulk TiO2 and ZnO affected the signaling of IIS and immune response pathway. In C. 

elegans both the pathways are involved in the longevity, reproduction, behavior, immune 

response, stress response etc (Miranda-Vizuetea and Veal, 2017; McCallum and Garsin, 

2016).  The eco-toxicological impacts of nano-TiO2 and nano-ZnO on the physiology have 

been investigated in a number of model organisms. Adverse effect of nano-TiO2 and nano-

ZnO has been reported on growth of bacteria (Ko et al., 2015; Lin et al., 2014; Maurer-Jones 

et al., 2013; Ge et al., 2011; Heinlaan et al., 2008),  Saccharomyces cerevisiae (Usatii et al., 

2016), diatoms (Peng et al., 2011), marine and freshwater green algae (Hazeem et al., 2016; 
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Cardinale et al., 2012; Kulacki et al., 2012), Daphnia (Liu et al., 2014; Zhu et al., 2010), zebra 

fish (Vicario-Pares et al., 2014; Liu et al., 2014; Zhu et al., 2009), C. elegans (Khare et al., 

2015; Wu et al., 2013; Li et al., 2012), earth worm (Alahdadi and Behboudi, 2015), 

Drosophila melanogaster (Sabat et al., 2016), mice (Wang et al., 2016) and plants (Zafar et 

al., 2016; Burke et al., 2015; Masarovicova and Kralova, 2013; Yoon et al., 2013; Du  et al., 

2011). Similarly negative effect of nano-TiO2 and nano-ZnO on fertility has been reported in 

Daphnia (Liu et al., 2014; Lopes et al., 2013; Zhu et al., 2010; Heinlaan et al., 2008), 

earthworm (Alahdadi and Behboudi, 2015; Schlich et al., 2012), zebra fish (Vicario-Pares et 

al., 2014; Liu et al., 2014; Zhu et al., 2008), C. elegans (Khare et al., 2015; Wu et al., 2013; Li 

et al., 2012), mouse/rats (Brohi et al., 2017; Amara et al., 2015). Further impaired behavior has 

been reported in Daphnia (Fekete-Kertesz et al., 2016; Lopes et al., 2013; Zhu et al., 2009), 

rainbow trout (Boyle et al., 2013), C. elegans (Khare et al., 2015; Wu et al., 2013; Li et al., 

2012), Drosophila melanogaster (Sabat et al., 2016) and mice (Xie et al., 2012) on exposure to 

nano-TiO2 and nano-ZnO. Even the lifespan in Caenorhabditis elegans was found to be 

adversely affected when worms were treated with nano-TiO2 and nano-ZnO (Kumar et al., 

2016). The harmful effects of different NPs on the physiology of aquatic and terrestrial 

organisms have been reported (reviewed in Peng et al., 2017; Da, 2016; Exbrayat et al., 2015; 

Ivask et al., 2014). Even we have shown adverse impairment in worm physiology in response 

to nano/bulk TiO2 and ZnO exposure (Ratnasekhar et al., 2015; Khare et al., 2015). In this 

chapter, our aim is to investigate whether antioxidants that quench ROS (Chapter 2) and 

subsequently protect organisms against over-expression of oxidative stress response gene and 

protein (Chapter 3 and 4), are capable of attenuating the nano-induced adverse effects on the 

physiology of worms.
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Therefore, the main aim of the study is to determine physiological variations in worms on 

exposure to nano-TiO2 and nano-ZnO followed by the ability of ascorbic acid and curcumin to 

overcome the same. To achieve the same we tested physiological parameters such as growth, 

reproduction, locomotion behavior and lifespan in exposed worms in presence or absence of 

antioxidants. 

5.2    Material and methods

Nano/bulk of TiO2 and ZnO along with antioxidant (curcumin/ascorbic acid) were employed 

in the present study for determining their effects on the physiological response of worm. 

Synchronized L4 worms were exposed to concentrations of LC1, LC10 and LC50 of nano/bulk 

particles. Treatment of particles (in the presence and absence of antioxidants) was given along 

with control (water or solvent control) for 24 h (±0.5) at 20°C. Physiological endpoints like 

growth, reproduction, locomotion behavior (head thrash & body bend) and lifespan were 

assayed in the exposed worms in comparison to control worms. 

5.2.1    Growth Assay:

After treatment, the worms were washed and treated with 125 mM sodium azide (NaN3) 

to inhibit the movement of worms. Subsequently, images were captured using an 

inverted microscope (Nikon Eclipse TE2000-S with DXM1200f camera) at 10X 

magnification. The growth of worm was measured as the mean length of worm and the 

analysis was carried out using Image-J software using 3252 pixels = 1mm as scale. The 

experiment was repeated thrice with 30 replicates for each group. 
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5.2.2    Fertility Assay:

Age synchronized L4 worms were individually placed in each well of a 12-well plate. 

Treatment was given at the lethal concentrations of nano/bulk TiO2 and ZnO along with 

food (2X) in the presence or absence of antioxidant for 72 h (±0.5) at 20°C. After three 

days, the number of offspring at all stages except the eggs were counted (Middendorf 

and Dusenbery, 1993). Experiments were repeated thrice with twelve replicates in each 

group. 

5.2.3    Behavior Assay:

After treatment duration, the nematode behavior was monitored under the microscope by 

tracking body bend and head trashes frequency (Tsalik and Hobert, 2003). Worms were 

harvested and individually (from each treatment group) were transferred on to an 

unseeded NGM plate. After 1 min recovery period individual worm was manually scored 

under the microscope, 1 min for head trashes and 20 sec for body bends. A head thrash is 

defined as the change in the direction of bending at the midbody. A body bend is counted 

as a change in the direction of the part of the nematodes corresponding to the posterior 

bulb of the pharynx along the Y-axis, assuming that the nematode was traveling along 

the X-axis. The experiment is repeated trice with 30 replicates for each group.  

5.2.4    Lifespan assay:

Synchronized L4 worm was treated for 24 h and then 30 worms from each treatment 

group were transferred to seeded NGM plates containing 50 µM 5-fluoro-2’-

deoxyuridine (FUdR). FUdR is known to block cell division hence inhibit progeny 

production in worms. Every day, nematodes were observed under the microscope for 

their survival and periodically moved to fresh plates to keep growth condition mold free. 
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Animals were scored as dead if they are failed to respond to the gentle touch of Pt-wire 

(Kwon et al., 2010).  

5.2.5 Statistical analysis: 

Physiological assays were expressed as mean±SEM. Significance was analyzed using 

one-way analysis of variance (ANOVA). p<0.05, 0.01 and 0.001 were considered 

statistically significant on Bonferroni correction. Percent effect was determined by 

taking control as 100% and evaluating effects in treatment groups. Recovery was 

calculated assuming 0% recovery in the treatment group (without supplement).

5.3 Results

5.3.1a Effect of TiO2/ZnO NPs on the growth of the organism in comparison to 

bulk: 

Growth was observed in terms of average length of the nematodes. The control worms 

measured 0.97±0.04 mm. There was a significant reduction (p<0.01) in the body length 

by 7.08% was observed when the worms were exposed to the LC50 concentration of the 

nano-TiO2 but not that of bulk. However, among all the other comparisons the reduction 

in growth was found to be non-significant with respect to control. The decrease in length 

of worms exposed to nano was non-significant in comparison to that of bulk (Figure 5.1). 

When worms were exposed to nano-ZnO significant reduction (p<0.001) of 6.9%, 9.5% 

and 10.9% in the length of the worm was observed at LC1, LC10, and LC50 

concentrations, respectively. In worms exposed to the bulk-ZnO the reduction in the 

length of worm observed was 2.7%, 2.7% and 4.5% at LC1, LC10, and LC50 
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concentrations, respectively. The decrease in length of worms exposed to nano was 

significant to that of bulk at all the concentrations (Figure 5.1). 

5.3.1b Amelioration effects of antioxidant on the growth of an organism:

   Significant reduction in the growth of worms on exposure to particles was attenuated 

when exposure was carried out in presence of either curcumin or ascorbic acid (Figure 

5.1).

Figure 5.1 Amelioration effects of ascorbic acid and curcumin on nano-TiO2, bulk-

TiO2, nano-ZnO and bulk-ZnO on the growth of C. elegans. C = control; RC = 

reference control; n=90, bar = mean±SEM of three independent experiments; 

Bonferroni corrected *p<0.001, %p<0.01 = Significant against control 

5.3.2a Effect of TiO2/ZnO NPs on the reproduction of organism in comparison to 

bulk: 

The average progeny count in control worms was 138.9±0.69. Significant (p<0.05) 

reduction in progeny count was noticed in worms exposed to both nano/bulk forms of 

TiO2/ZnO particles at all the three concentrations tested (Figure 5.2). In worms exposed 
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to LC1, LC10 and LC50 of nano-TiO2, reduction in progeny count was observed by 15%, 

30%, and 50%, respectively, in comparison to that of control. Similarly, an organism 

exposed to bulk-TiO2 at LC1, LC10 and LC50 concentrations 14.6%, 22.6% and 35.5% 

reduction in the progeny count was observed, respectively. A significant (p<0.05) 

decline in progeny count was noticed in nano-TiO2 exposed worms at the LC50 

concentration in comparison to bulk (Figure 5.2).

The reduction in the progeny of nano-ZnO/bulk-ZnO exposed worms at LC1 

concentration was 33%/9%, at LC10 concentration, the reduction was 49.6%/22.7% and 

at LC50 concentration the reduction was, 67.3%/ 45.6% respectively.  Further, nano-ZnO 

at all the exposed concentrations (LC1, LC10, and LC50) was found significant (p<0.01) 

in comparison to that of bulk (Figure 5.2). 

5.3.2b Amelioration effects of antioxidant on the reproduction of organism:

The progeny count did not differ significantly between control, solvent control and 

among the worms exposed to only antioxidants. In presence of antioxidant (curcumin or 

ascorbic acid) during treatment, the progeny count was equivalent to that in control 

among the exposed worms indicating complete protection at low exposure 

concentrations (LC1 and LC10) of nano/bulk particles. Even at the LC50 concentration of 

nano/bulk particles in presence of antioxidants, significant (p<0.001) recovery of about 

77-80% in the exposed worms was noticed (Figure 5.2) in comparison to control.
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Figure 5.2 Amelioration effects of ascorbic acid and curcumin on nano-TiO2, bulk-

TiO2, nano-ZnO and bulk-ZnO induced reproductive toxicity in C. elegans. C = 

control; RC = reference control; n=36, bar = mean±SEM of three independent 

experiments; Bonferroni corrected *p<0.001 = Significant against control; @p<0.001 

= Significant recovery (in presence of antioxidant) against particle exposure 

5.3.3a Effect of TiO2/ZnO NPs on behavior of the organism in comparison to bulk:

The average head thrash count per minute in control worm was 136.7±0.43. Significant 

(p<0.01) reduction in head thrash count was noticed in worms exposed to both nano/bulk 

forms of TiO2/ZnO particles at all the three concentrations tested (Figure 5.3A). In 

comparison to the control, a significant reduction (p<0.001) in head thrash count in 

worms exposed to LC1, LC10, LC50 concentrations was observed by 31.6%, 49.5%, 

57.8% in nano-TiO2 as well as 16.4%, 34.6%, 43.8% in bulk-TiO2, respectively. The 

significant reduction (p<0.01) in the head thrashes was observed at LC10 and LC50 of 

nano-TiO2 compared to the same concentrations of bulk particles. 

Significant reduction (p<0.001) was noticed in the head thrashes count by 48.5%, 

60.4%, 69.7% in worms exposed to nano-ZnO and 17.1%, 35.3%, 53.1% in worms 
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exposed to bulk-ZnO, at  LC1, LC10, LC50 concentrations, respectively, in comparison to 

that of controls. Further, at all the exposure concentrations reduction in head thrash count 

of worms exposed to nano-ZnO was found significant (p<0.01) in comparison to that of 

bulk-ZnO (Figure 5.3A).

The average body bends per 20 seconds in control worm was 17.3±0.08. Body bends 

count of worms exposed to the nano/bulk were observed to be significantly reduced 

(p<0.001) at all the tested concentrations, in comparison to control. We found 38%, 

54%, 62% reduction in response to nano-TiO2 and 24%, 32%, 45% reduction in bulk-

TiO2 was observed at LC1, LC10 and LC50 concentrations, respectively. A significant 

decline (p<0.05) in body bends count of worms was observed at the LC10 concentration 

of nano- TiO2 compared to respective bulk (Figure 5.3B).

The reduction in the body bend by 39%, 58%, 68% was found in worms exposed to 

nano-ZnO and  29%, 38%, 53% reduction in worms exposed to bulk-ZnO at LC1, LC10 

and LC50 concentrations respectively, compared to control. On the similar line, a 

significant decline in body bends count of worms exposed at LC10 (p<0.05) and LC50 

(p<0.01) of nano-ZnO was observed compared to bulk-ZnO (Figure 5.3B).

5.3.3b Amelioration effects of antioxidant on the behavior of organism:

 In presence of the antioxidant, no significant alteration in the behavior of worms was 

noticed between control, solvent control and among the worms exposed to only 

antioxidants. Nano/bulk exposed worms (at LC1, LC10 and LC50 concentrations) showed 

a significant recovery (p<0.001) in both the head thrashes as well as body bend behavior. 

At LC1 and LC10 concentrations, the head thrash, as well as body bend-count of worms 

exposed to nano/bulk particles in the presence of antioxidants, was non-significant to 
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that in control. However at the LC50 concentration of nano/bulk particles, in presence of 

antioxidants 86%-95% recovery was found in case of head thrashes (Figure 5.3A). 

Similarly in case of body bend behavior in worms exposed to  LC50 concentrations of 

nano/bulk TiO2, in presence of antioxidants 50-60% recovery was observed; and 60-70% 

recovery in case of worms exposed to LC50 concentrations of nano/bulk ZnO in presence 

of antioxidants (Figure 5.3B).

Figure 5.3 Amelioration effects of ascorbic acid and curcumin on nano-TiO2, bulk-

TiO2, nano-ZnO and bulk-ZnO induced behavioral toxicity in C. elegans. (A) Head 

trashes (B) Body bends. C = control; RC = reference control; n=30, bar = 

A

B
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mean±SEM of three independent experiments; Bonferroni corrected *p<0.001 = 

Significant against control; @p<0.001 = Significant recovery (in presence of 

antioxidant) against particle exposure

5.3.4a Effect of TiO2/ZnO NPs on the lifespan of the organism in comparison to 

bulk:

Compared to control (mean lifespan; 16.5 days), the mean lifespan was significantly 

reduced (p<0.01) among nano-TiO2 exposed worms at LC10 and LC50 concentration 

(mean lifespan; 14.6 and 14 days) while bulk-TiO2 was not observed to have any effect 

on the lifespan of the organism. The significant reduction (p<0.05) in the lifespan of 

worms exposed to LC10 and LC50 of nano-TiO2 was observed, compared to bulk particles 

(Figure 5.4).

However, nano-ZnO exposed worms have significant reduction (p<0.001) in mean 

lifespan even at LC1 concentration (mean lifespan; 12.2 days) while in bulk-ZnO 

exposed worms significant reduction (p<0.01) in mean lifespan was noticed at LC10 and 

LC50 concentration (mean lifespan; 14.6 and 14 days) (Figure 5.4). Further, the reduction 

in the life span of nano-ZnO exposed worms was significant (p<0.05) with respect to 

bulk at all the tested concentrations (Figure 5.4).

5.3.4b Amelioration effects of antioxidant on the lifespan of an organism:

Presence of ascorbic acid and curcumin (mean lifespan; 18.4 and 18.8 days) significantly 

(p<0.01) increases the lifespan of the organism, in comparison to control (mean lifespan; 

16.5 days). Similarly in presence of antioxidants during particle treatment the exposed 

worms showed mean lifespan of 17.5-18, equivalent to only antioxidant treatment, 
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indicating significant (p<0.05) recovery and amelioration of particle effect on lifespan 

(Figure 5.4).

Figure 5.4 Amelioration effects of ascorbic acid and curcumin on nano-TiO2 (A, B), 

bulk-TiO2 (C, D), nano-ZnO (E, F) and bulk-ZnO (G, H) induced change in mean 

lifespan of worms; Kaplan-Meier survival curve. *p<0.05

C D

E F

A B

G H
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5.4  Discussion

Alteration in physiological response is certainly an indicator of cellular stress and C. elegans 

offers several endpoints that can serve as markers of cellular response in adverse conditions, 

such as- lethality, growth, reproduction, lifespan and behavioral changes. All the assays reflect 

the larval, embryonic, neuronal and cellular developmental of the organism. Growth, 

reproduction, and lifespan are an indicator of nutrient availability and proper development of 

the organism at a cellular and organizational level. While, behavior assays (body bends, head 

trashes, pharyngeal pumping, distance traveled etc.) indicates neuronal heath of the organism.  

In stress conditions, reduction in the growth (in terms of length) and reproduction reflect a 

delay in developmental progression and this may contribute to the prolonged lifespan of an 

organism. However, damage to neurons or network between the neurons can have the negative 

impact on the behavior of the organism. Thus, with the aim to determined physiological 

variations in worms on exposure to nano/bulk TiO2 and nano/bulk ZnO we measured the 

effect on growth, reproduction, behavior, and lifespan of an organism.

In the present study, the growth of C. elegans (reflected by the length of the organism) was 

significantly affected by the nano/bulk TiO2/ZnO exposure. Similar results on growth have 

been reported by others on exposure to nano-TiO2 in C. elegans (Roh et al., 2010; Wang et al., 

2009) they have shown the involvement of the cyp35a2 (xenobiotic metabolism gene) gene as 

well as particle dissolution as the cause for reduction in growth.  Further, it has been reported 

that the nano-CeO2 induced oxidative stress and also has a strong affinity to bind with E. coli 

leading to the restricted dietary intake of food, resulting in the decrease in the growth of 

exposed worm (Rogers et al., 2015).  However, environmentally relevant concentrations both 
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nano-TiO2 as well as nano-CeO2 did not have the significant effect on the growth of organism 

(Roh et al., 2008).  

Stress alters the reproductive speed, locomotion and life cycle in C. elegans. In the present 

study on exposure to TiO2/ZnO particles, we noticed an adverse effect on the reproductive 

potential, locomotion behavior as well as the lifespan of the C. elegans, in a dose-dependent 

manner. These studies are in collaboration with the published reports wherein, they have 

shown that nano-TiO2 and nano-ZnO affect the reproduction of organisms such as bacteria (Ge 

et al., 2010), C. elegans (Khare et al., 2015; Ratnasekhar et al., 2015; Wang et al., 2009), 

earthworm (Alahdadi and Behboudi, 2015) and Daphnia (Lopes et al., 2013). In Zebra fish 

(Liu et al., 2014) NPs are known to penetrate the blood-testis barrier and damage the 

spermatogenesis (Brohi et al., 2017; Lan and Yang, 2012). Even in case of mammalian system 

(rats) exposure to nano-TiO2 was found to be associated with the suppressed spermatogenesis 

as a consequence of which significant reduction in progeny count was noticed (Hong et al., 

2015). Reproductive organs and neurons are the secondary target organ for NPs in nematodes 

(Brohi et al., 2017; Jiang et al., 2016; Nouara et al., 2013; Zhao et al., 2013). Similarly, defect 

in locomotion behavior of C. elegans has been reported on exposure to a broad spectrum of 

chemical and environmental stress including heavy metals and metal oxide NPs (Scharf et al., 

2016; Soria et al., 2015; Gupta et al., 2015; Suganthi et al., 2015; Khare et al., 2015; Rui et al., 

2013; Chen et al., 2013; Xie et al., 2012). On exposure to metal (CuSO4, Cd, Mn, Zn) and 

metal NPs (Ag NPs), negative effect on the lifespan of C. elegans has also been reported 

(Piechulek et al., 2017; Koch et al., 2014; Chen et al., 2013). Thus, it appears that there is a 

close correlation between ROS production and negative impact on organism’s morphological 

as well as behavioral traits such as growth, reproduction, locomotion behavior and lifespan in 
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nematodes. To prove this concept, we analyzed the impact of particles on morphological and 

behavioral traits in worms exposed to particles in presence of antioxidants. Indeed, the 

amelioration of negative impact of the particle on morphological as well as behavioral traits in 

presence of antioxidants in exposed worms indicates that antioxidants provide protection not 

only against ROS but also against ROS induced adverse effects. The quenching of ROS 

production in presence of antioxidant(s) during treatment (Chapter 2) followed by recovery in 

oxidative stress gene and protein expression (Chapter 3 and 4) would consequently reduce the 

impact of particles on morphological and behavioral traits of exposed worms. Thus, in this 

chapter, we provide functional validation for the protective role of antioxidants against the 

adverse effect of particles. We also demonstrate quenching of ROS is co-related with the 

amelioration of particle-induced effects on growth, locomotion behavior, reproduction and 

lifespan of the exposed worm. 

 

5.5    Summary

 Exposure to nano-TiO2 at LC50 concentration and nano-ZnO at all tested concentrations 

caused the significant reduction in the growth of exposed worms. 

 Worms exposed to either nano/bulk TiO2/ZnO exhibited the significant decline in 

progeny count as well as locomotion and foraging behavior.

 Nano-TiO2 and bulk-ZnO at LC10 and LC50 concentration, as well as nano-ZnO at all 

tested concentrations, had the significant negative impact on the lifespan of the exposed 

worms.

 The negative impact on growth due to particle treatment on worms was ameliorated in 

presence of antioxidants during treatment.
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 Adverse effects on reproduction and behavior in worms exposed to particles were not 

noticed when antioxidants were given along with treatment, at low treatment 

concentrations. 

 In worms exposed to the LC50 concentration of particles in presence of antioxidants, 75-

80% recovery was noticed in case of progeny count, but recovery was not complete. 

 In worms exposed to the LC50 concentration of particles in presence of antioxidants, 80-

90%, and 50-60% recovery was noticed in case of locomotion behavior and foraging 

behavior, respectively.

 The presence of antioxidants during particle treatment led to significant (p<0.05) 

recovery and amelioration of particle effect on lifespan.

 Significant recovery in morphological and behavioral traits of particle exposed worms in 

presence of antioxidants is functional validation for the protective role of antioxidants 

against the adverse effect of particles.
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6. Conclusion

The present research study entitled “Evaluation of antioxidants in amelioration of toxic 

effects of engineered nanoparticles using Caenorhabditis elegans as a basic in-vivo 

alternative model” was carried out to determine the adverse effects of TiO2 and ZnO 

nanoparticles (NPs) and the ameliorating properties of ascorbic acid and curcumin. First, we 

determined the physiochemical characteristics of NPs using TEM, SEM and DLS techniques 

and determined its stability in exposure medium. The average particle size (determined 

through TEM) of the nano and bulk TiO2 was observed to be 11 nm and 124 nm, while for 

ZnO nano and bulk particles were 21 nm and 242 nm. The hydrodynamic size (determined 

through Zeta Sizer; DLS) for nano-TiO2, bulk-TiO2, nano-ZnO and bulk-ZnO were 240±10 

nm, 346±1.7 nm, 153±0.6 nm and 1589±213 nm and zeta-potential (determined through Zeta 

Sizer; Zeta potential) were found to be -14±0.7 mV, -21±1.6 mV, 22±0.6 mV and -19±0.9 

mV, respectively. The NPs were in nano range, uniformly dispersed and observed to be stable 

for 72 h in the absence/presence of antioxidants. Then, we determined the LC50 concentrations 

(lethal concentration at which 50% worms were dead) of the nano/bulk particles both at 

chronic (72 h, L1 to L4) and acute (24 h) exposure. The LC50 values for chronic exposure of 

nano-TiO2, nano-ZnO, bulk-ZnO were found to be 54.2 μg/ml, 0.18 μg/ml and 0.93 μg/ml 

respectively, while bulk-TiO2 was found non-lethal up to 200 μg/ml. Similarly, the LC50 

values for acute exposure in young adult were found to be 172 μg/ml, 1.125 μg/ml and 4.64 

μg/ml for nano-TiO2, nano-ZnO and bulk-ZnO, respectively. However, bulk-TiO2 was found 

non-lethal even at the 500 μg/ml. The results indicate that nano forms of the particles were 

more toxic than the respective bulk and nano-ZnO was more toxic than nano-TiO2 in C. 
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elegans. Further, the toxicity of the particles was dose and exposure duration dependent. To 

determine the protective potential of antioxidants (ascorbic acid and curcumin) against the 

NPs induces lethality antioxidant exposure was given prior, post and along with particles 

treatment. In both acute as well as chronic exposures to NPs, the pre-(20 µM and above) and 

post-(60 µM and above) as well along with (100 µM and above) antioxidants supplement was 

found to be protective against the NPs induced mortality. Thus, the antioxidants efficiently 

protect the worm against NPs induced lethality in acute as well as chronic exposure. Pre-

antioxidant supplementation was most effective approach against the NPs induced lethality in 

worms.

Reactive oxygen species (ROS) generation in worms exposed to NPs was significant in 

comparison to control as well as bulk particles. On acute exposure (24 h) of worms to 

nano/bulk TiO2 and ZnO, 6.3-/4.4- fold and 7.4-/5.4- fold increase in ROS generation was 

observed at LC50 concentration. Similarly, ROS generation in worms on chronic exposure (72 

h) to nano/bulk TiO2/ZnO was 2.3-/1.6-fold and 4.04-/2.16-fold increase, respectively. In both 

acute as well as chronic exposures to NPs, the pre-(20 µM) and post-(60 µM) as well along 

with (100 µM) antioxidants supplement was found to be protective against the NPs induced 

ROS generation. Quenching of ROS when antioxidant supplement was given pre- or post NPs 

treatment was complete, however that was not so when it was given along with NPs. Thus, we 

further studies the co-exposure conditions for investigating the molecular mechanism 

underlying the adverse effects of nano/bulk TiO2/ZnO in exposed worms and its attenuation in 

presence of antioxidants.

To determine the molecular mechanism for particle induced toxicity, we examined the role of 

the major oxidative stress response pathway, the insulin/insulin-like growth factor signaling 
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pathway (IIS-pathway; Figure 6.1A). IIS-pathway is an important, evolutionarily conserved 

pathway involved in the growth, development, metabolic homoeostasis, fecundity, stress 

resistance and the lifespan of an organism. In C. elegans DAF-2, DAF-16, SKN-1 and HSF-1 

are the major transcriptional factor (TF) of IIS-pathway and immune response pathway 

therefore, we determined the gene expression of these TF as well as their downstream genes. 

We found significant down-regulation in the expression of daf-2 while up-regulation in the 

expression of other TF such as, daf-16, skn-1 and hsf-1 and their downstream genes gst-4, gcs-

1, sod-3, ctl-2, hsf-16.2. We also noticed activation of superoxide dismutase and catalases in 

exposed worms and reduction in the glutathione and glutathione reductase enzyme activity in 

exposed worms, through enzymatic assays. Oxidative stress was also found to activate 

immune response in nano/bulk TiO2/ZnO exposed worms, since expression of the genes 

involved in the immune response (p-38-pathway; skn-1, nsy-1, pmk-1) were significantly up-

regulated. We have also witnessed significant increase in phosphorylated JNK levels in NPs 

exposed worms (Figure 6.1B). Therefore both nano/bulk TiO2/ZnO exposures were found to 

induce oxidative stress mediated alteration in IIS and immune signaling in exposed worms. 

Further we also noticed macro-molecule damage in particle exposed worms. Exposure to 

nano/bulk TiO2/ZnO leads to lipid peroxidation, protein carbonylation and DNA damage and 

apoptosis. All these effects ultimately culminated into significant reduction in growth, progeny 

count, locomotion and foraging behavior as well as lifespan in worms exposed to nano/bulk 

TiO2/ZnO particles. Therefore, exposure to nano/bulk particles causes oxidative stress and 

leads to cytotoxicity, genotoxicity, macromolecular damage and adverse affect on the 

physiology of worms. The adverse effects are more prominent in NPs exposed worms 
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compared to control or bulk exposed worms. ZnO particles are more toxic compared to TiO2 

particles in C. elegans.

Finally, the co-exposure of antioxidants based amelioration of toxic effects of NPs was 

determined. Exposure of particle at sub-lethal concentrations (LC1 and LC10) in the presence 

of antioxidants efficiently protects the organisms from nano/bulk particles induced oxidative 

damage (Figure 6.1C). At LC50 concentrations of nano/bulk particles presence of antioxidants 

provide 50-80% recovery against the particles induced oxidative stress and other consequences 

in worms. Thus, presence of antioxidants during particle treatment normalizes enzymatic 

activity, mitigates the macromolecular damage as well as adverse effect on growth, 

reproduction, behavior and lifespan of exposed organism. Significant recovery in 

morphological and behavior traits of particle exposed worms in presence of antioxidants is 

functional validation for the protective role of antioxidants against adverse effect of particles. 

Therefore, our study indicates the protective role of curcumin and ascorbic acid against 

nano/bulk particle toxicity and a possibility of evading the nanotoxicity by incorporating these 

antioxidants in the everyday diet.   
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Figure 6.1 Graphical representations to describe the mode of TiO2/ZnO particle toxicity and its amelioration in C. elegans 

A) Control worms B) Particle exposed worms C) Worms exposed to particle in presence of antioxidants

Nano-TiO2/ZnO leads to ROS production leading to activation of oxidative stress response genes. The down-regulation of daf-2 

and up-regulation of DAF-16/SKN-1/HSF-1 transcription factors leads to stress regulation by enhancing the antioxidant enzyme 

production as well as activity. In addition to IIS pathway, oxidative stress also leads to activation of SKN-1 through p-38 pathway 

and DAF-16 through MAPK-JNK-1 pathway. High oxidative stress leads to depletion of GSH which in turn fails to reduce 

peroxidase formation. Accumulation of malondialdehyde (MDA) and protein carbonyl (PC) along with reduction in mitochondrial 

activity triggers DNA damage leading to apoptosis. Overall TiO2/ZnO negatively affects growth, behavior, reproduction and 

lifespan in C. elegans. Presence of antioxidants during particle exposure protects worms from particle induced oxidative damage.    
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